
Modernizing BGP Data Access with BGPFiend
Thomas Krenc, Justin Loye

and Dimitrios Giakatos
IIJ Research Laboratory

{tkrenc,jloye,dimitrios}@iij.ad.jp

Hans Kuhn
and Owen Conway

RouteViews, University of Oregon
{hans,owen}@routeviews.org

Ties de Kock
RIPE NCC

tdekock@ripe.net

kc claffy
CAIDA, UC San Diego

kc@caida.org

Abstract—BGP data is essential for understanding Internet
routing and security, but the volume of data required for analysis
has grown substantially over time. To preserve compatibility
with long-standing consumer workflows, public route collector
archives such as RIPE RIS and RouteViews continue to rely on
a more than 20-year-old storage and dissemination model. As a
result, BGP data consumers must download and process large
volumes of often irrelevant data, making analysis bandwidth-
intensive and inefficient.

In this poster paper, we present BGPFiend, a web service that
modernizes BGP data access without replacing existing archives
or disrupting established workflows. BGPFiend enables selec-
tive, collector-side preprocessing of BGP data and returns only
explicitly requested results to consumers using generic HTTP
tools. Through an evaluation of prefix, community, and peer
AS queries using an initial prototype, we show that BGPFiend
considerably reduces consumer-side data transfer and query
duration compared to conventional consumer-side parsing. By
preserving existing formats and trust assumptions while enabling
incremental adoption of modern archival techniques, BGPFiend
provides a practical path toward scalable BGP data analysis.

I. INTRODUCTION

The Border Gateway Protocol (BGP) [1] is the Internet’s
interdomain routing protocol and a primary data source for
Internet measurement and operational research. Large-scale
BGP data is collected by long-running route collector projects
such as RIPE RIS [2] and RouteViews [3].

Despite sustained growth in BGP data volume, the underly-
ing archival model has remained largely unchanged for more
than two decades. Route collector archives disseminate data
primarily by time range and collector, while fine-grained fil-
tering by prefix, community, or peer AS is typically performed
at the consumer-side after entire MRT [4], [5] files have
been downloaded (e.g., using tools such as BGPStream [6]
or BGPKIT [7]). As a result, consumers must transfer and
parse large volumes of data, often hundreds of megabytes per
query, even when only a small subset is relevant.

We introduce BGPFiend, a web service that enables collec-
tor-side preprocessing and fine-grained filtering while preserv-
ing existing archives and long-standing consumer workflows.
Returning only explicitly requested results, BGPFiend substan-
tially reduces data transfer and improves the efficiency of con-
sumer-side analysis. It targets interactive, query-driven access
and complements bulk-download and streaming pipelines. The
feasibility of this approach is demonstrated through an initial
prototype implementation, evaluated on representative prefix,
community, and peer AS queries.

Fig. 1. Comparison of the classic (top) and modern (bottom) BGP Data
Access Architectures. BGPFiend (green box) shifts parsing, filtering, and
preprocessing to the collector side, improving information flow through 1⃝
MRT file indexing, 2⃝ file selection, 3⃝ BGP data delivery, and 4⃝ consumer-
side analysis.

This poster highlights the following additional advantages
of BGPFiend:

• Backward-compatible deployment that preserves existing
collection infrastructure and consumer workflows.

• HTTP-native BGP data access for consumers via generic
tools, removing dependence on specialized MRT parsers.

• Filtering and preprocessing at the collector-side, reducing
consumer-side data transfer and processing requirements.

• Support for incremental adoption of improved indexing
and alternative archival formats such as Parquet [8].

II. CLASSIC AND MODERN ARCHITECTURE

Figure 1 contrasts two BGP data access architectures: a
classic consumer-side workflow (top) and a modern collector-
side workflow enabled by BGPFiend (bottom).

In the classic workflow, a consumer retrieves compressed
BGP data from route collector archives such as RIPE RIS
or RouteViews using MRT parsers such as BGPStream or
BGPKIT 4⃝. These tools rely on an MRT file broker to
identify relevant MRT files based on coarse parameters such
as time range or collector 2⃝. The broker periodically scans
the archives for newly available files 1⃝, which are then
downloaded in full from the archives over the Internet 3⃝.
Fine-grained filtering, e.g., by prefix, community, or peer AS,
is applied only after the data has been transferred to the
consumer.



Fig. 2. Download Volume. Boxplots showing consumer-side bytes down-
loaded for prefix, community, and peer AS queries using BGPStream (classic)
and BGPFiend with MRT and Parquet (modern). Using BGPFiend, data is
reduced by approximately 96% from 325 MB to < 20 MB for community
and peer AS queries, and drops to < 3 KB for prefix queries.

Fig. 3. End-to-End Duration. Boxplots showing end-to-end query duration
for prefix, community, and peer AS queries using BGPStream, MRT, and
Parquet. The modern approach consistently reduces duration, with Parquet
achieving sub-second response times for prefix queries and lower median
duration and variability for community and peer AS queries.

In the modern workflow, a consumer accesses BGP data
using generic HTTP tools such as curl or a web browser 4⃝,
without requiring consumer-side MRT parsing. HTTP requests
are handled on the collector side by BGPFiend (green box),
a web service that provides a uniform query interface over
the underlying archives. BGPFiend uses MRT parsers to per-
form file selection, filtering, and preprocessing, returning only
explicitly requested data to the consumer 3⃝. This shifts the
bulk of data transfer and processing away from the consumer,
reducing bandwidth and local processing requirements.

By acting as an intermediary layer, BGPFiend preserves
compatibility with existing archives while enabling the integra-
tion of improved indexing mechanisms and alternative archival
formats, such as Parquet, a columnar storage format, without
disrupting established workflows.

The simplified access model allows functionally equivalent
queries to be expressed using either conventional BGP tools
or HTTP-based queries. Example command-line queries for
the prefix case are:

$ curl bgpfiend/parquet?k=prefix
$ curl bgpfiend/mrt?k=prefix
$ bgpreader -k prefix

III. ANALYSIS

We evaluate the modern approach by retrieving prepro-
cessed BGP data via BGPFiend (Parquet and MRT) and
compare it against the classic consumer-side workflow using
BGPStream. We measure the download volume and the end-
to-end duration of prefix, community, and peer AS queries
using 100 randomly selected values per query type.

Figure 2 shows the download volume across the three
methods. For prefix queries, transferred data drops from ap-
proximately 325 MB with BGPStream to less than 3 KB. For
community and peer AS queries, download volume is reduced
by approximately 96%, from hundreds of megabytes to a few
and tens of megabytes, respectively. This demonstrates that
collector-side filtering removes most unnecessary data transfer.

Figure 3 shows end-to-end query duration. The modern
approach consistently reduces duration, with the largest gains

observed for prefix queries. Using Parquet, prefix queries
complete in sub-second time, while BGPStream and MRT
require more than 10 s. For community and peer AS queries,
duration reductions are smaller but systematic, with Parquet
outperforming both BGPStream and MRT. For large result
sets, performance converges as transfer and parsing dominate;
BGPStream benefits from compressed MRT files, while BGP-
Fiend incurs overhead from text-based streaming and server-
side formatting.

Overall, relocating MRT file access and parsing at the
collector side considerably reduces consumer-side data trans-
fer and improves time-to-insight, while remaining compatible
with existing workflows.

IV. DISCUSSION AND OUTLOOK

Our results show that meaningful efficiency gains in BGP
data analysis can be achieved without replacing existing
archives or consumer tooling. By preserving established for-
mats and access semantics, BGPFiend enables incremental
evolution of BGP data access rather than a disruptive redesign.
While this work focuses on download volume and duration,
the same abstraction provides a foundation for additional
capabilities, such as richer indexing, alternative archival for-
mats, and caching. Future work includes broader deployment
across route collector projects and extending BGPFiend with
additional query primitives and data sources.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol
4 (BGP-4),” RFC 4271, IETF. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc4271

[2] RIPE NCC, “RIPE Routing Information Service (RIS),”
https://www.ripe.net/analyse/internet-measurements/routing-information-
service-ris/.

[3] University of Oregon, “RouteViews Project,” https://www.routeviews.org.
[4] L. Blunk, M. Karir, and C. Labovitz, “Multi-Threaded Routing Toolkit

(MRT) Routing Information Export Format,” RFC 6396. [Online].
Available: https://www.rfc-editor.org/rfc/rfc6396

[5] C. Petrie and T. King, “MRT Extensions for BGP Path Attributes,” RFC
8050. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8050

[6] CAIDA, “BGPStream,” https://bgpstream.caida.org.
[7] BGPKIT Contributors, “BGPKIT,” https://bgpkit.com.
[8] Apache Software Foundation, “Apache Parquet,”

https://parquet.apache.org/.


