Coarse-grained Inference of BGP Community Intent
Welcome
Inferences
We provide our mapping of coarse-grained categories (action and informational) to communities observed in public BGP data.

Download infered categories: 2023050x.communityinference.txt.bz2 (214K)

The mappings are created using our inference method and 1 week (May 1-7, 2023) of RIBs and updated provided by RouteViews and RIPE RIS.

$ zcat 2023050x.communities.txt.gz | head -n8 1:0,action 1:1,action 1:2,action 1:3,action 1:9,action 1:10,action 1:11,action 1:12,action $ zcat 2023050x.communities.txt.gz | cut -d"," -f2 | sort | uniq -c 24376 action 54104 info
Reproducability
In order to reproduce the inferences above, you will need the following files:

communityinference.py (11K)

2023050x.onoff.txt.bz2 (829K)

2023050x.asns.txt.bz2 (182K)

2023050x.labels.txt.bz2 (16K)

Download those files and use them in python3 as followed (or download the jupyter notebook: communityinference.ipynb):

mingap = 140 onoffthresh = 160 exec(open("communityinference.py").read()) mymodel = CommunityInference() mymodel.load_feats('2023050x.onoff.txt.bz2') mymodel.load_asns('2023050x.asns.txt.bz2') mymodel.augment_feats('2023050x.labels.txt.bz2') mymodel.augment_clusters(mingap) df_comm, df_clust = mymodel.infer_default(onoffthresh) df_comm[['comm','pred']].to_csv('2023050x.communityinference.txt.bz2', index=False, header=False)