
Shoehorn: Towards Portable P4 for Low Cost
Hardware

Christopher Lorier, Matthew Luckie, Marinho Barcellos, Richard Nelson
The University of Waikato, Hamilton, New Zealand

clorier@wand.net.nz, mjl@wand.net.nz, marinho.barcellos@waikato.ac.nz, richardn@.wand.net.nz

Abstract—Having a consistent application stack for hardware
from multiple vendors allows operators to build simpler, more
stable networks. However, due to the limitations of low cost,
fixed-function networking hardware, creating portable control-
plane software with current SDN standards requires accepting
limited functionality, navigating inconsistent implementations, or
using powerful, flexible hardware that is prohibitively expensive
in many scenarios.

This paper describes Shoehorn, a system for creating portable
SDN control-plane software for low cost hardware. Shoehorn
allows control-plane software to define a hardware-agnostic
virtual pipeline in P4 that can be algorithmically translated to
control diverse low-cost hardware without a significant impact
on memory usage or the rate that tables can be updated.

To demonstrate the effectiveness of Shoehorn, we created
virtual pipelines for a variety of existing control-plane software,
and mapped them to low cost hardware. We found that the virtual
pipelines could be supported by hardware from multiple vendors
in almost all cases.

Index Terms—SDN, P4, OpenFlow

I. INTRODUCTION

A key benefit of separating the control and data planes of
network devices is allowing a single SDN controller1 to control
diverse hardware from a variety of vendors. Portable SDN
gives operators the ability to run the software of their choice
on the hardware of their choice, allowing for cost-savings,
reliability, resilience of supply, and other advantages.

Fixed-function ASICs are widely used in low-cost hardware
to support the packet processing rates required for high speed
networking. These ASICs can process millions of packets per
second cheaply, both in terms of production cost and power
consumption. However, ASICs designed by different vendors
have subtle differences that hinder the development of portable
SDN software.

SDN standards such as the Portable Switch Architecture
(PSA) [4] and OpenFlow [5] ostensibly support portable
controllers. Both standards allow controllers to define pipelines
of arbitrary match–action lookup tables. Entries in the tables
specify the actions datapaths apply to matching packets,
including modifying header fields or outputting the packet,

1We adopt a general view of the control plane to avoid limiting how Shoe-
horn is used. The control-plane software dictates the forwarding behaviour
of a datapath in a software-defined network. It can be implemented as a
controller (e.g. Faucet [1]), a controller application (e.g. OpenNetMon [2]),
or a combination of the two (e.g. TouSIX [3]). For brevity, we use the term
“controller” to refer to the control-plane software.

and the path through the pipeline is determined based on the
outcome of table lookups.

However, pipelines defined by controllers may be incompat-
ible with those used by fixed-function ASICs. Programmable
ASICs, such as the Intel Tofino [6] or the Mellanox NP-
5 [7] have the flexibility to support arbitrary pipelines, but
are prohibitively expensive for many applications. Vendors of
low cost hardware often place limitations on the entries each
table supports, forcing controllers to conform to the ASIC
pipeline. As the pipelines of each vendor’s ASICs are different,
controllers must tailor their behaviour to individual pipelines,
inhibiting portability.

To simplify the creation of portable controllers, researchers
have proposed portability layers between the control and data
planes [8]–[10]. Controllers define a virtual pipeline indicating
their intended functionality, which is mapped to the physical
pipeline, either by vendor provided drivers [8] or by a generic
mapping algorithm [9], [10].

Current mapping algorithms focus on mapping in the gen-
eral case, which comes at a significant performance cost.
Sanger et al. [10] and Pan et al. [9] both presented approaches
that convert a virtual pipeline to a graph, and then map
the graph to the target physical pipeline. These approaches
may increase the number of table entries in the physical
pipeline. In the worst case, combining multiple virtual tables
into one physical table can require an entry in the physical
table for every combination of entries in the virtual tables,
resulting in an exponential increase in memory usage and the
time taken to add or delete entries. This is an unacceptable
performance burden when using the mapping for real-time
translation between the two pipelines.

We propose a much simpler method: only map tables in
the virtual pipeline to tables in the physical pipeline that are
capable of completely supporting the same set of entries. This
approach means that updating any entry in the virtual pipeline
requires only updating a single entry in the physical pipeline,
ensuring real-time translation has no significant performance
impact. While our approach is less likely to find a successful
mapping in the general case, in practice, most pipelines—
whether for hardware or controllers—tend to use similar
tables. We further augment our approach by recirculating
packets so they can be processed an additional time, which
can work around otherwise incompatible table orderings, and
allows controllers to modify packets throughout the virtual
pipeline.ISBN 978-3-903176-48-5 ©2022 IFIP



Translation Software

Controller

Hardware

Shoehorn

virtual_pipeline.p4

physical_pipeline.p4

mapping

Fig. 1. A possible SDN architecture using Shoehorn. Shoehorn receives a
definition of a virtual pipeline for the controller and a physical pipeline for the
hardware. Shoehorn finds a mapping between the two that translation software
can use to translate control-plane messages between the two pipelines.

This paper presents Shoehorn, a system for improving the
portability of SDN controllers across low cost hardware. Shoe-
horn allows controller developers to define a virtual pipeline
in P4 for their software to target. Shoehorn finds mappings
between the virtual pipeline and the pipeline of a physical
device, provided the physical device contains suitable tables
to match each virtual table. These mappings preserve the
performance of the virtual pipeline.

Shoehorn consists of two new P4 architectures: the Shoe-
horn Virtual Architecture (SVA) for defining virtual pipelines,
and the Shoehorn Physical Architecture (SPA) for physical
pipelines; an algorithm for finding mappings between pipelines
defined in the two architectures; and a proof-of-concept im-
plementation of that algorithm that we use to demonstrate its
effectiveness.

Fig. 1 shows a hypothetical SDN architecture using Shoe-
horn. The controller defines its virtual pipeline and has no
knowledge of the details of the physical device. Shoehorn
receives the definitions of the virtual and physical pipelines
and finds a mapping between them. Independent translation
software intercepts control-plane messages and uses the map-
ping found by Shoehorn to translate the messages to produce
identical behaviour from the virtual and physical pipelines.
The design of the translation software is beyond the scope of
this work as it is dependent on the control protocol, of which
Shoehorn does not require any knowledge.

We evaluate Shoehorn by creating P4 definitions in the SVA
of 23 SDN controller pipelines from research and production
deployments, and use Shoehorn to map them to a variety of
hardware pipelines (defined in the SPA). All but four of the
tested pipelines were able to be supported by hardware from
at least two vendors.

The rest of this paper is structured as follows: §II reviews
details of SDN standards strictly relevant to this work; §III

provides an overview of Shoehorn; §IV presents the two
Shoehorn P4 Architectures; §V describes the algorithm used
by Shoehorn to find mappings between virtual and physical
pipelines; §VI demonstrates the effectiveness of Shoehorn by
mapping existing controllers to real hardware and discusses
the results; §VII compares Shoehorn with related work; and
§VIII summarises the work and the results.

II. BACKGROUND

A. OpenFlow

OpenFlow [5] abstracts the forwarding behaviour of a data-
path as a pipeline of match–action tables. Controllers modify
the behaviour of datapaths by adding and removing entries in
these tables. The datapath applies the first table to all packets
and applies subsequent tables based on which table entries the
packet matches.

Table entries have a set of matches, a set of instructions, and
a priority. When a datapath applies a table to a packet, the table
returns the instructions associated with the highest priority
matching entry. Each match has a masked value for a header
field of the packet. The entry matches packets with masked
header fields equal to each match value. The instructions
are the actions taken by the datapath after a table look-up.
Instructions include modifying packet header fields, outputting
the packet, dropping the packet, sending the packet to the
controller, or applying a subsequent table to the packet.

B. Switch Abstraction Interface

The Switch Abstraction Interface (SAI) [11] is a widely
supported SDN standard that provides a vendor-agnostic API
to a variety of datapaths. The SAI is a C-style interface to
control a consistent, fixed-function pipeline providing basic
networking functions such as switching, routing, QoS and
ACLs. SAI is able to provide portability using vendor-provided
drivers by limiting the functionality it exposes.

C. P4

P4 [12] is a programming language for specifying the
behaviour of a datapath. P4 allows programmers to define the
behaviour of the parser, which extracts header fields from the
packet; the deparser, which reconstructs packets for output; the
control flow; any match–action tables; and other aspects of a
datapath with much more detail than OpenFlow. The match–
action tables work similarly to tables in OpenFlow, but because
P4 allows developers to define the control flow, pipelines can
be designed more efficiently. For instance, determining the IP
version of a packet can be performed with a switch statement
rather than a table.

Match Kinds. In P4, match–action table definitions include a
dictionary of header field to match kind mappings. The match
kind indicates the type of memory used for matches of that
field. The core P4 library defines three match kinds: exact, for
matches that cannot be masked; lpm, for matches that use a
longest prefix mask; and ternary, for matches that use arbitrary
masks. For most hardware, match kinds affect the update rate
and power consumption.



extern Objects. P4 supports control of queues and stateful
functions (such as registers or counters) using extern objects.
This allows P4 to support any feature of a datapath not
supported natively in P4. externs define a programmable
interface to a feature, but none of the functionality.

P4 Architectures. P4 allows programming many components
of datapaths, but how the various components fit together
is defined by a P4 architecture. P4 architectures provide
the interface to a specific datapath, any externs, and the
programmable blocks and their restrictions [12].

III. OVERVIEW

To map virtual pipelines to diverse fixed-function physical
pipelines, Shoehorn relies on two key observations. The first
is that most controllers and hardware use similar tables.
In particular, tables with large numbers of entries that see
the most updates tend to perform common tasks, such as
Ethernet switching, IP routing, or 5-tuple matching. While
implementations can have subtle variations, for most uses they
are similar enough to support the same entries.

The second key observation is that most table access control
is very simple. Both physical and virtual pipelines usually
apply tables to every packet, every packet of a given protocol
(e.g. every IPv6 packet), or every packet that matches one
other table (e.g. a Termination MAC address table determining
access to a routing table). This greatly simplifies the process
of ensuring mapped tables are applied to the correct set of
packets.

These observations are generalisations, they are not suffi-
cient to guarantee portability. Shoehorn will be unable to find
a mapping when a controller requires a feature or a table that
a physical device does not support. Shoehorn can be used to
verify the suitability of a device for a given controller.

A physical pipeline can support a virtual pipeline when the
physical pipeline has a suitable table for each virtual table,
and the pipeline can apply those tables in an equivalent order
to the correct set of packets. When the hardware and virtual
pipelines apply tables in an incompatible order, Shoehorn will
attempt to correct the order by recirculating the packet. This
reduces the overall throughput of the switch, but in enterprise
networks, bandwidth is often constrained by other factors such
as uplink bandwidth rather than overall switch throughput.

The components of Shoehorn are:
Shoehorn Physical Architecture (SPA): a P4 architecture

for describing the pipeline of a physical device.
Shoehorn Virtual Architecture (SVA): a P4 architecture for

describing the pipeline required by controllers.
Shoehorn Mapping Algorithm: for finding mappings be-

tween a pipeline defined in the virtual architecture and
a pipeline defined in the physical architecture.

Shoehorn targets enterprise hardware using ASICs with pub-
lished support for either multi-table OpenFlow 1.3 or the SAI.
The target hardware is: hardware supporting the SAI, hardware
with Broadcom ASICs supporting the OpenFlow Data Plane
Abstraction (OF-DPA) [13], Mellanox hardware supporting the

Onyx OS [14], Cisco Catalyst 9000 hardware [15], and HPe
Aruba hardware supporting OpenFlow [16].

The SAI and OF-DPA pipelines are both strictly speci-
fied fixed-function pipelines. Cisco and Aruba both feature
pipelines of flexible tables that can be preconfigured to support
any matches, masks, actions, and next tables. The Mellanox
pipeline is a hybrid of both approaches with a fixed-function
pipeline including a series of configurable ACL tables. How-
ever, unlike the Cisco and Aruba pipelines, the Mellanox ACL
tables only use ternary match kinds.

IV. SHOEHORN P4 ARCHITECTURES

This section describes the SVA and SPA. The SVA is
used by controller developers to define the pipeline that
their software requires, while the SPA is used by hardware
vendors to define the pipeline used by their hardware. We
designed the architectures to maximise the likelihood that
Shoehorn can find mappings between virtual and physical
pipelines. For simplicity, when a design decision is arbitrary,
the architectures follow the PSA [4].

Parser. Both Shoehorn architectures specify a fixed parser.
Fixed-function ASICs are not capable of supporting arbitrary
parsers. When an application requires bespoke headers, more
flexible P4 hardware should be used. The parser is modelled
on the OpenFlow specification version 1.3 [17], and extracts
headers based on the match fields used in OpenFlow, as well
as setting metadata fields based on those used in OpenFlow,
such as ip proto.

Metadata. Retaining metadata is challenging when recircu-
lating a packet. Hardware may be restricted in the number of
fields, and the number of bits of metadata it can recirculate.
Because of this, Shoehorn does not allow user-defined Meta-
data in the SVA. This is a limitation of Shoehorn: VRFs, for
instance, cannot be supported by Shoehorn.

Metadata for both architectures includes the ingress and
egress port, and the SPA includes the number of times a packet
has been recirculated. The recirculation count is necessary
for the physical pipeline to be able to apply tables correctly,
and the ingress port is one of the most frequently matched
fields. To reduce metadata requirements when recirculating,
Shoehorn overwrites the ingress port with the egress port once
a forwarding decision is made.

Actions. Actions in Shoehorn are closely tied to the actions
used in OpenFlow. The SVA and SPA provide primitive action
externs modelled on OpenFlow actions, and to simplify the
mapping process, user-defined actions are not allowed control
flow logic.

ActionModules. In the SVA and SPA, actions are applied by
new externs called ActionModules, which can be instantiated
and called within control blocks. ActionModules define where
in a pipeline actions will be applied. As recirculation is only
necessary when a packet is modified, this allows controller
developers to specify when a recirculation can occur.

To maximise the flexibility when reordering tables, the
Shoehorn architectures do not impose an order in which ac-



tions are applied to packets. For instance, if a packet has a drop
and a notify controller action applied in two separate tables
in the same action module, the packet may be dropped before
it reaches the table with the notify controller action. If an
application requires that actions should be applied in a specific
order, the tables should be separated by an ActionModule.

Goto Metadata. Some target hardware allows tables to be
linked arbitrarily. To support this scenario, the SPA uses the
goto metadata field. goto metadata can be written by the goto
action and can be read in conditional statements to control
access to tables. The goto action and metadata fields do not
exist in the SVA.

Match Kinds. The SVA uses the match kinds defined in the P4
core library: exact, lpm, and ternary, as well as an all or exact
match kind. The all or exact match kind is taken from the
OpenFlow Table-Type Patterns Specification [18]. The SVA
also includes an annotation that indicates that a match with
an exact or lpm match may be supported by a match with a
different match kind.

Flexible tables may match any header field with any match
kind and can apply any combination of actions. To allow the
definition of flexible tables, the SPA has new match kinds. In
addition to the match kinds used in the SVA, the SPA adds
a configured counterpart to each, as well as a configured any
match kind. The configured match kinds indicate that the table
can support virtual tables that match the given field with the
corresponding match kind, or a table where that match is
absent. The configured any match kind indicates the table can
match the given field with any match kind.

V. MAPPING

Shoehorn finds mappings from a virtual to a physical
pipeline, where each table in the virtual pipeline maps directly
to a table in the physical pipeline. This ensures that any update
to a table entry in the virtual pipeline requires translation
software to only update a single entry in the physical pipeline.
Tables in the physical pipeline can support multiple virtual
components (tables and conditional statements). Conditionals
cannot be updated and only ever match one value, so mapping
a virtual conditional to multiple physical components does not
significantly affect the update rate or memory usage.

Shoehorn’s mapping algorithm takes a compiled represen-
tation of the physical and virtual pipelines. This consists of
a list of component trees, each representing the components
preceding an ActionModule in the P4 code.

The procedure for finding mappings occurs in two stages.
In the first stage, Shoehorn identifies all potential component
mappings for each component in the virtual pipeline without
consideration of the layout of the pipelines. In the second
stage, Shoehorn finds mappings that ensure that each table
is applied to the correct set of packets.

A. Stage 1: Identifying Supporting Components

To begin with, Shoehorn identifies every component in the
physical pipeline that can support each component in the

virtual pipeline without considering the pipeline layout. To be
able to support a virtual component, a physical component
needs to support all the actions and matches used by the
virtual component. Virtual conditionals can be supported by a
physical conditional or a physical table, but virtual tables can
only be supported by physical tables.

A physical match can always support a virtual match if
they match the same field and have the same match kind (or
if the physical match has a corresponding configured match
kind). While it is possible to support a virtual exact, or lpm
match with a physical ternary match, this may increase the
power consumption and may cause a considerable reduction
in the update rate, which could prevent real time translation.
Consequently, Shoehorn only allows such a mapping when
explicitly directed with an annotation. Shoehorn always allows
all or exact matches to be mapped to ternary matches.

The speed at which hardware can update tables depends on
the slowest match kind used in that table. For example, if a
table has an exact match on Ethernet type and a ternary match
on IPv6 destination, the update rate will be limited by the
ternary match. Therefore, such a virtual table can be mapped
to a physical table that has a ternary match on both Ethernet
type and IPv6 destination.

Shoehorn will accept Physical tables that match additional
fields, as those fields could be filled by aggregating with
another component. For instance, a physical table that has an
exact match on Ethernet type and IPv6 destination will still
potentially be able to support a virtual table that only matches
IPv6 destination, as the virtual table may be aggregated with
another component that matches Ethernet type.

B. Stage 2: Finding Mappings

Stage 2 finds the final mappings with correct access
control. Shoehorn iteratively attempts to map each virtual
ActionModule to ActionModules in the physical pipeline.
ActionModules apply actions before any subsequent tables are
applied, so a physical ActionModule can only support one
virtual ActionModule in each recirculation. On the other hand,
because ActionModules apply actions in an undefined order,
an ActionModule in the virtual pipeline can be mapped to
multiple ActionModules in the physical pipeline.

Shoehorn starts by mapping the components associated with
the first ActionModule in the virtual pipeline to components
associated with the first ActionModule in the physical pipeline.
If there are remaining unmapped components Shoehorn moves
onto the next physical ActionModule and repeats the process.
This continues until all the virtual components are mapped
or Shoehorn reaches the end of the physical pipeline. Once
Shoehorn finds a mapping for all of the components, it will
continue mapping the next virtual ActionModule, starting with
the next ActionModule in the physical pipeline. If Shoehorn
reaches the end of the physical pipeline without mapping all
of the virtual components, it will recirculate and start again
from the first physical ActionModule. This process ends when
Shoehorn finds a mapping for all components in the virtual



Algorithm 1 Map components from a virtual module to a
physical module

1: function MAP MODS(cand l, p mod l, v mod l, limit)
. cand l: partially complete candidate mappings

. p mod l: physical module components
. v mod l: virtual module components

. limit: int, the maximum size of cand l
2: for each component pc in p mod l do
3: for each component vc in pc.supports() do
4: for each candidate in cand l do
5: new ⇐ candidate.clone();
6: new.map component(vc, pc); . §V-B1
7: new.check access ctrl() . §V-B2
8: if new is valid then
9: cand l.add(new);

10: remove invalid match kinds(cand l); . §V-B3
11: prune strictly outclassed(cand l); . §V-B4
12: prune partially outclassed(cand l); . §V-B5
13: prune(cand l, limit); . §V-B6

return cand l;

pipeline, a full recirculation fails to map any components, or
the maximum number of recirculations is reached.

Alg. 1 shows how Shoehorn maps a virtual ActionModule
to a physical ActionModule. The algorithm takes a list of the
current partially-complete candidate mappings, a list of the
components associated with the physical ActionModule, a list
of the components associated with the virtual ActionModule,
and a size limit for the resulting list of candidates. The
algorithm iterates through the physical components, and for
each component, finds all combinations of virtual component
mappings. Each time if finds a new combination, the algorithm
creates new candidate mappings, adding the new combination
to each partially-complete mapping. The algorithm validates
the new candidates and then uses heuristics to discard all but
the most promising candidates.

In the worst case, this approach scales exponentially in time
and memory usage, and does not guarantee finding a correct
result. In practice, however, all of the target hardware fits into
two categories, both of which avoid these issues.
Fixed-function pipelines: The OF-DPA and SAI pipelines

are both so restrictive that the number of possible map-
pings for any given table is small enough that the number
of candidate mappings never grows unmanageably.

Configurable pipelines: The Cisco, Aruba, and Mellanox
pipelines all use a series of identical, configurable tables
that can be arranged arbitrarily with goto instructions.
Because the tables are identical, all valid mappings that
map the same tables are equivalent, allowing the majority
of candidates to be discarded.

The steps of Alg. 1 are discussed next (§V-B1 to §V-B6).
1) Map Component (Alg. 1, L6): Candidate mappings

contain trees of all the virtual components mapped to each
physical component, referred to as the entry trees. When a new

HTTPS
Conditional 1

Table 1
Matches:

ipv6.source: ternary
Actions: [set eth dst]

Default: notify

HTTP
Conditional 2

Table 2
Matches:

ipv6.source: ternary
Actions: [drop]
Default: no-op

Table 3
Matches:

ipv6.destination: ternary
ipv6.source: ternary
Actions: [set eth dst]

Default: notify

true

false

true

Conditional 1

Conditional 2

Table 1

Table 2 Table 3

true

false

true false

Fig. 2. A section of a virtual pipeline that is aggregated into a single physical
table, and the corresponding entry tree. Nodes in the entry tree can only have
one child on a true (or false) evaluation. However, as Table 2 drops all packets
it matches, it can still be merged with Table 3. Table 2 becomes the immediate
child of Conditional 2, and Table 3 becomes the child of Table 2.

Table 1
IP Source: Actions: Priority:

2001:db8:1::/48 set eth dst 100
2001:db8:2::/48 set eth dst 100

::/0 notify 0

Table 2
IP Source: Actions: Priority:

2001:db8:1::2 drop 100
::/0 no-op 0

Table 3
IP Source: IP Destination: Actions: Priority:

2001:db8:1::/48 2001:db8:3::1 set eth dst 100
::/0 ::/0 notify 0

Mapped Table
IP Source: IP Destination: Port: Actions: Priority:

2001:db8:1::/48 ::/0 443 set eth dst 500
2001:db8:2::/48 ::/0 443 set eth dst 500

::/0 ::/0 443 notify 400
2001:db8:1::2 ::/0 80 drop 300

2001:db8:1::/48 2001:db8:3::1 80 set eth dst 200
::/0 ::/0 80 notify 100
::/0 ::/0 ANY no-op 0

Fig. 3. A demonstration of merging tables. This shows hypothetical table
entries for the section of virtual pipeline shown in Fig. 2 and the corresponding
entries for the mapped table. Entry priority in the mapped table is determined
by the path through the entry tree. The highest priority entries belong to Table
1, followed by the Table 1 default entry. The next highest priority entries are
from Table 2, followed by its default (in this case a no-op) combined with the
entries from Table 3, and finally a no-op entry for packets that return False
when applied to Conditional 2.



virtual component, vc, is mapped to a physical component, pc,
it is added to the entry tree for that physical component. If,
after adding vc, the entry tree is invalid, then the candidate
mapping is invalid.

Fig. 2 shows how an entry tree corresponds to a section of a
virtual pipeline. Each node in an entry tree represents a virtual
component and can have up to two child nodes, representing
the components applied following a true or false evaluation
of the parent (for tables the evaluation represents whether
the packet matched a table entry). While a virtual pipeline
may have multiple components accessed by a true or false
evaluation for a single component, they generally cannot be
aggregated together. The exception is tables that always drop
packets on a match. Such tables are inserted as the immediate
child, and the other component becomes its child following
a miss. Only conditionals can have a child following a true
evaluation, because a child of a table after a match would
require an entry in the physical table for each combination of
entries in the two virtual tables.

Fig. 3 demonstrates how Shoehorn populates entries for an
aggregated table. Every node in the entry tree without two
children corresponds to an entry type in the mapped table,
matching the combined fields of all components that evaluate
true in its path from the root. Shoehorn determines the priority
offset for entries by the path through the tree: all entries from
nodes descending from a true evaluation of given node have
higher priorities than all entries from nodes descending from
a false evaluation.

2) Check Access Control (Alg. 1, L7–9): Once Shoehorn
finds a potential mapping for a component, it verifies the
access control is consistent. Access to tables in the SVA is
controlled in one of two ways: either by a conditional, where
a metadata or packet header field must be equal (or not) to a
specified value; or by matching an entry (or not) in a table.
The set of packets that a table will apply to is defined by a list
of masked field values and tables that the packet must match
(or not).

If the hardware has a configurable pipeline, then Shoehorn
only needs to verify it has successfully mapped all components
in the access control set. If the hardware has a fixed pipeline,
then Shoehorn finds the path through the entry trees to reach
the target physical component. Shoehorn verifies that the set
of virtual components in the path through the entry trees to
reach the target component is equivalent to the access control
set of the virtual component.

Shoehorn also verifies that any potential children of the
mapped components are reachable. If the physical table
does not support arbitrary goto actions, Shoehorn will check
whether there is a mapped virtual table that controls access to
another table. In that case, the entry tree must have no children
on a false evaluation of any node. If there is such a child,
and all of its descendants are conditionals, then Shoehorn
removes the child and its descendants. If there is a table that is
descended from a false evaluation then the candidate mapping
is invalid. If the entry tree and access control are valid, the
candidate, new, is added to the list of candidates, cand l.

3) Remove Invalid Match Kinds (Alg. 1, L10): After finding
all candidate mappings for each physical table, Shoehorn
checks that the match kinds for each candidate mapping do not
conflict. Shoehorn only does this after all virtual components
have been mapped to the physical table, as it is possible that
a conflicting match kind can be resolved by aggregating a
new component. If the match kinds conflict then the candidate
mapping is removed from cand l.

4) Prune Strictly Outclassed Candidates (Alg. 1, L11):
Shoehorn then does a first pass of pruning candidates, remov-
ing any candidate with virtual–physical component mappings
that are a subset of another candidate’s mappings from cand l.

5) Prune Partially Outclassed Candidates (Alg. 1, L12):
Shoehorn repeats the process of mapping components until it
reaches the end of an ActionModule. At that point, either the
physical pipeline allows arbitrary goto actions, or, because
access control cannot cross an ActionModule, the previous
tables will be irrelevant for access control of future tables.
Shoehorn removes from cand l any mapping that maps a
subset of virtual components mapped by another candidate
regardless of how they are mapped.

6) Final Pruning (Alg. 1, L13): At this stage, fixed-function
pipelines typically have very few remaining candidate map-
pings. However configurable pipelines may still have many
candidates. In order to further decrease the workload, Shoe-
horn reduces cand l to a random set of configurable size from
the candidates that map the largest number of components.
The size of the set is a trade-off between run time and the
likelihood of finding a complete mapping, but we have found
that the size of the set has little impact on the likelihood of
success except when cand l is less than 100.

VI. EVALUATION

To evaluate Shoehorn, we mapped a variety of virtual
pipelines to physical pipelines based on Shoehorn’s target
hardware. The virtual pipelines are based on twenty-three
SDN controllers, which we chose to reflect a variety of
network types and uses. We preferred controllers with real-
world production deployments. We made virtual pipelines for
each controller in the SVA and then used Shoehorn to find a
mapping to the physical pipelines.

A. Physical Pipelines

We implemented physical pipelines based on Shoehorn’s
target hardware in the SPA. However, as OpenFlow and
P4 are not fully compatible, and without access to the full
specification of the vendor’s ASICs, we cannot guarantee
our implementations are perfect recreations. Regardless, our
implementations represent a variety of incompatible pipelines,
demonstrating Shoehorn’s ability to find mappings for diverse
hardware. This section discusses some of the challenges for
our implementations.

For Shoehorn to function correctly, the physical hardware
must be able to keep track of how many times a packet has
been recirculated, and the ingress or egress port after recircu-
lation. As recirculation is not part of the OpenFlow standard,



TABLE I
THE NUMBER OF RECIRCULATIONS REQUIRED FOR EACH PHYSICAL PIPELINE TO SUPPORT EACH OF THE 23 CONTROLLERS’ VIRTUAL PIPELINES. A

DASH INDICATES THE CONTROLLER’S VIRTUAL PIPELINE CANNOT BE SUPPORTED.

Controller Description SA
I

A
ru

ba

C
is

co

O
F-

D
PA

M
el

la
no

x

AuthFlow [19] A host authentication mechanism for enterprise networks. 3 0 0 3 -
Castor [20] A SDN Internet exchange interconnect that provides telemetry and ARP hygiene. - 0 0 - -
Faucet [1] A widely-deployed enterprise controller performing switching and routing. 3 - 0 3 -

Hierarchical SDN [21] An architecture for data centre networks for scalable TE. - - - 0 -
In-Packet Bloom Filters [22] An architecture for data centres using bloom filters encoded in Ethernet addresses to

load balance traffic.
1 0 0 1 -

iTelescope [23] A-bump-in-the-wire system for identifying video and providing telemetry. - 0 0 - -
Magneto [24] A system for providing fine-grained path control in a hybrid legacy–OpenFlow enterprise

network, by manipulating MAC learning on the legacy devices.
0 - 0 0 -

NetPaxos [25] A system for accelerating consensus Paxos protocols in data centres by creating a
canonical ordering of messages within the network.

0 0 0 0 -

NFShunt [26] A system for accelerating Netfilter in hardware for use in a Science DMZ. - 0 0 - -
OF-Like PBR [27] A system for applying policy in a hybrid legacy–OpenFlow network. It uses OpenFlow

switches to rewrite IP destinations to control how the legacy devices forward traffic.
- 0 - - -

OFLoad [28] A load balancing system for data centres that generates tunnels for elephant flows. - 0 0 - -
OFTDP [29] A topology discovery technique for SDN. 0 0 0 0 0
OLiMPS [30] A system for establishing and load balancing across point-to-point VLANs for use in

research networks.
0 0 0 0 0

OpenNetMon [2] A loss monitoring system in reactive OpenFlow networks. 0 - - 0 0
Precision Medicine [31] A Science DMZ for campus networks for medical applications. 1 0 0 1 -

Random Host Mutation [32] A security system for enterprise networks that randomly rewrites IP addresses. - 0 - - -
RouteFlow [33] An SDN router for OpenFlow v1.0. Our implementation in the SVA uses lpm match

kinds to improve scalability, rather than the original single table design.
0 - 0 0 -

SciPass [34] A Science DMZ for campus networks. - 0 0 - -
SDProber [35] A system for monitoring link latency in SDNs. 0 - 0 0 -
SIMPLE [36] A system for enforcing middle box policies in enterprise networks. - 0 0 - -
TouSIX [3] A Production deployment at an Internet exchange in Toulouse. The TouSIX deployment

provides layer 2 security and fine-grained monitoring.
- 0 0 - -

VIP Lanes [37] An architecture for campus networks that allows creation of on-demand Science DMZs. 3 - 0 3 -
VPNs [38] A system for simplifying the configuration of VPNs in SDN data centres. There are

two types of devices described in the paper, a P node and a PE node. However the PE
node requires VRF metadata and therefore cannot be easily supported in the SVA. The
SAI, Aruba, OF-DPA and Mellanox can all support VRF metadata, but it is unclear
whether metadata can be preserved between recirculations.

- - - 0 -

Total number of controllers supported 12 15 18 14 3

we made assumptions as to how it can be achieved. For
all implementations, we assumed that the ingress and egress
port metadata could be recirculated and that the recirculation
metadata could be inferred from the ingress port or tunnel
ID. If there was no better alternative, recirculation could be
achieved with tunnels over loopback cables.

Cisco and Aruba. Flexible pipelines such as the Cisco and
Aruba are easy to express in the SPA. We have assumed both
pipelines are able to perform lpm match kinds on IP fields as
this is not expressible in OpenFlow.

SAI. The SAI has an existing P4 definition for the behavioural
model architecture, making translation into Shoehorn simple.
The only limitation of our implementation is the SAI’s use of
user-defined metadata, currently unsupported in the SPA.

OF-DPA. The OF-DPA pipeline is well specified, and requires
few modifications to be expressed in the SPA. The most
significant change is the MAC Learning table. The OF-DPA
uses a vendor extension to allow the Bridging table to be
looked up twice, with both the Ethernet source address and
the Ethernet destination address of a packet. For the purpose

of this evaluation, we assumed that we could add separate
entries to the Bridging table and the MAC Learning table. It
may be possible to recreate this behaviour by rewriting VLANs
internally, or with another similar method.

Mellanox. The Mellanox OpenFlow pipeline frequently redi-
rects traffic to the legacy pipeline for additional processing. As
the legacy pipeline is not clearly defined, our implementation
omits that functionality.

B. Virtual Pipelines

We implemented a virtual pipeline for each controller in
the SVA, based on a best-effort interpretation of the published
details. We required that the SDN controllers used features
compatible with OpenFlow version 1.3. When a controller
sends a packet to be processed by the hardware’s legacy
pipeline, the Faucet [1] pipeline was used in its place, as
Faucet is an OpenFlow implementation of standard switch
functions.



C. Results

Table I shows support for each virtual pipeline by the target
hardware. Excluding the Mellanox pipeline, every physical
pipeline was able to support the virtual pipelines of over half of
the controllers, without any customisation of the controllers to
the target hardware. Furthermore, 83% of the controllers were
supported by hardware from multiple vendors.

The Cisco and Aruba implementations supported 78% and
65% of the virtual pipelines, respectively, and never required
recirculation. The fixed-function OF-DPA implementation sup-
ported 60% of the virtual pipelines, while the SAI supported
52%. The Mellanox OpenFlow implementation performed
poorly, only supporting three controllers, as its pipeline is
based predominantly on ternary matches. The Mellanox hard-
ware also supports SAI, and therefore is more capable than
these results show.

In every case where Shoehorn was unable to find a success-
ful mapping, the controller required a table that was unable to
be supported by the physical pipeline. This demonstrates that
the observations in §III, coupled with packet recirculation, give
Shoehorn enough flexibility to allow portable SDN controllers
for fixed-function hardware, provided the hardware is capable
of supporting the controller in question.

Notable reasons for incompatibility between virtual and
physical pipelines were:

• SAI, Mellanox, and OF-DPA cannot do exact matches
except on specific fields. This is most notable when
virtual pipelines match individual flow 5-tuples. This is a
common use-case, and it seems likely that the hardware
is capable of supporting such matches, but it is not
exposed in their OpenFlow support. iTelescope, NFShunt,
OFLoad, SciPass and SIMPLE use these matches.

• OF-DPA is the only physical pipeline to support MPLS,
and therefore is the only pipeline to support Hierarchical
SDN or VPNs.

• Aruba cannot decrement TTL fields, meaning it cannot
support L3 applications.

• Cisco cannot set IP source and destination fields, which
is required for OF-Like PBR and Random Host Mutation.

• Castor and TouSIX both match ARP target protocol
address fields to improve ARP handling in IX networks,
which is only supported in the Cisco and Aruba pipelines.

Recirculations. No mapping required more than three recir-
culations. For many networks this would not be noticeable
as throughput is often limited by other factors, eg. uplink
bandwidth or firewall throughput. For example, a Broadcom
Wolfhound BCM5334x series chip provides 64Gb/s of switch-
ing at line rate [39]. If the throughput bottleneck for a switch
with such a chip is incoming traffic on a 10Gb/s port, then
three recirculations leaves 6Gb/s of switching capacity for
the remaining traffic. Even if the uplink is saturated in both
directions, then three recirculations only causes an increase in
the minimum line-rate packet size from 64B to 80B.

Run Time. In all cases the mapping was found (or failed) in
less than five minutes on a standard PC (Intel Core i3-2120

CPU with 4GB RAM). As the mapping algorithm can run at
compile time, speed is not a significant concern, and this result
is satisfactory for practical use.

VII. RELATED WORK

FlowAdapter [40], its successor FlowConvertor [9], and
Sanger et al. [10] presented techniques for mapping between
a virtual OpenFlow pipeline to a fixed-function physical
pipeline. Shoehorn has three main advantages over these
systems. First, Shoehorn uses P4 rather than OpenFlow, a
more expressive standard, that allows vendors to better define
the capabilities of their hardware. Second, Shoehorn ensures
that the memory requirements and update rate are the same in
the virtual and physical pipelines, whereas the previous work
would possibly add multiple entries to the physical pipeline
for a single entry in the virtual pipeline. Third, Shoehorn is
capable of mapping to flexible hardware as well as fixed-
function hardware. Pan et al. never tested FlowConvertor on
flexible hardware, and Sanger et al. were unable to support it,
as the growth in the potential solutions was too large.

Previous work improving portability of P4 focussed on
programmable hardware. P4 Transformer [41] is a system for
improving portability with P4 with programmable hardware,
presenting techniques for supporting certain P4 operations on
hardware that does not support them natively. Hyper4 [42] is a
P4 program that can be used as a target for other P4 programs,
improving portability and composability on programmable
hardware. MACSAD [43] is a system for controlling Open-
DataPlane [44], a portable API for networking software.

VIII. CONCLUSION

Shoehorn enables the creation of portable SDN control-
plane software by allowing developers to define a hardware-
agnostic virtual pipeline for their controller to target. We
presented two new P4 architectures, one for defining virtual
pipelines, and one for defining physical pipelines; as well as
an algorithm for finding mappings between them.

We demonstrated that for a wide variety of controllers,
Shoehorn is able to find a mapping from the virtual pipeline to
multiple diverse, low cost hardware pipelines. Of twenty-three
controllers tested, Shoehorn found mappings for at least one
physical pipeline in all cases, and all but four were portable
across multiple pipelines.

In every case where Shoehorn was unable to find a mapping,
it was because of a table in the virtual pipeline that could
not be supported by the physical pipeline. The control flow
of the pipeline was never a factor in a failed mapping. This
demonstrates that Shoehorn enables fixed function pipelines
to support portable SDN controllers provided: the hardware is
able to recirculate packets efficiently while retaining a small
amount of metadata, and the hardware supports the individual
tables used by the controller.

REFERENCES

[1] J. Bailey and S. Stuart, “Faucet: Deploying SDN in the enterprise,”
Communications of the ACM, vol. 60, no. 1, pp. 45–49, 2016.



[2] N. L. Van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon:
Network monitoring in OpenFlow software-defined networks,” in 2014
IEEE Network Operations and Management Symposium (NOMS).
IEEE, 2014, pp. 1–8.

[3] R. Lapeyrade, M. Bruyère, and P. Owezarski, “OpenFlow-based mi-
gration and management of the TouIX IXP,” in NOMS 2016-2016
IEEE/IFIP Network Operations and Management Symposium. IEEE,
2016, pp. 1131–1136.

[4] P4.org Architecture Working Group. (2021, 2021-04-02) P416 portable
switch architecture (PSA). [Online]. Available: https://p4.org/p4-
spec/docs/PSA.html

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69–74, 2008.

[6] A. Agrawal and C. Kim, “Intel Tofino2-A 12.9 Tbps P4-Programmable
Ethernet Switch,” in Hot Chips Symposium, 2020, pp. 1–32.

[7] Mellanox Technologies, “NP-5™Network Processor,” Product Brief,
2019.

[8] M. Yu, A. Wundsam, and M. Raju, “NOSIX: A lightweight portability
layer for the SDN OS,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 2, pp. 28–35, 2014.

[9] H. Pan, G. Xie, Z. Li, P. He, and L. Mathy, “Flowconvertor: Enabling
portability of SDN applications,” in IEEE INFOCOM 2017-IEEE Con-
ference on Computer Communications. IEEE, 2017, pp. 1–9.

[10] R. Sanger, M. Luckie, and R. Nelson, “Towards transforming OpenFlow
rulesets to fit fixed-function pipelines,” in Proceedings of the Symposium
on SDN Research, 2020, pp. 123–134.

[11] Open Compute Project, “Switch Abstraction Interface (SAI),” Open
Compute Project, Tech. Rep., 2015.

[12] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[13] Broadcom, “OpenFlow™data plane abstraction (OF-DPA): Abstract
switch specification,” Broadcom, Tech. Rep., 2014.

[14] Mellanox Technologies, Mellanox Onyx User Manual, 5th ed., Mellanox
Technologies, 2019.

[15] Cisco Systems, Inc., Programmability Configuration Guide, Cisco IOS
XE Gibraltar 16.11.x, Cisco Systems, Inc., 2021.

[16] Hewlett Packard Enterprise Development LP, Aruba OpenFlow 1.3
Administrator Guide for ArubaOS-Switch 16.07, Hewlett Packard En-
terprise, 2018.

[17] Open Networking Foundation, “OpenFlow switch specification version
1.3,” Open Networking Foundation, 2012.

[18] ——, “OpenFlow table type patterns,” Open Networking Foundation,
Tech. Rep., 2014.

[19] D. M. F. Mattos and O. C. M. B. Duarte, “AuthFlow: authentication and
access control mechanism for software defined networking,” annals of
telecommunications, vol. 71, no. 11, pp. 607–615, 2016.

[20] H. Kumar, C. Russell, V. Sivaraman, and S. Banerjee, “A software-
defined flexible inter-domain interconnect using ONOS,” in 2016 Fifth
European Workshop on Software-Defined Networks (EWSDN). IEEE,
2016, pp. 43–48.

[21] L. Fang, F. Chiussi, D. Bansal, V. Gill, T. Lin, J. Cox, and G. Ratterree,
“Hierarchical SDN for the hyper-scale, hyper-elastic data center and
cloud,” in Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, 2015, pp. 1–13.

[22] C. A. Macapuna, C. E. Rothenberg, and M. F. Maurı́cio, “In-packet
bloom filter based data center networking with distributed OpenFlow
controllers,” in 2010 IEEE Globecom Workshops. IEEE, 2010, pp.
584–588.

[23] H. H. Gharakheili, M. Lyu, Y. Wang, H. Kumar, and V. Sivaraman,
“iTeleScope: Intelligent video telemetry and classification in real-time
using software defined networking,” arXiv preprint arXiv:1804.09914,
2018.

[24] C. Jin, C. Lumezanu, Q. Xu, H. Mekky, Z.-L. Zhang, and G. Jiang,
“Magneto: Unified fine-grained path control in legacy and OpenFlow
hybrid networks,” in Proceedings of the Symposium on SDN Research,
2017, pp. 75–87.

[25] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “Netpaxos:
Consensus at network speed,” in Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, 2015, pp. 1–7.

[26] S. Miteff and S. Hazelhurst, “NFShunt: A linux firewall with OpenFlow-
enabled hardware bypass,” in 2015 IEEE Conference on Network Func-
tion Virtualization and Software Defined Network (NFV-SDN). IEEE,
2015, pp. 100–106.

[27] A. Mishra, D. Bansod, and K. Haribabu, “A framework for OpenFlow-
like policy-based routing in hybrid software defined networks.” in INC,
2016, pp. 97–102.

[28] R. Trestian, K. Katrinis, and G.-M. Muntean, “OFLoad: An OpenFlow-
based dynamic load balancing strategy for datacenter networks,” IEEE
Transactions on Network and Service Management, vol. 14, no. 4, pp.
792–803, 2017.

[29] A. Azzouni, N. T. M. Trang, R. Boutaba, and G. Pujolle, “Limitations of
OpenFlow topology discovery protocol,” in 2017 16th annual mediter-
ranean Ad hoc networking workshop (Med-Hoc-Net). IEEE, 2017, pp.
1–3.

[30] H. B. Newman, A. Barczyk, and M. Bredel, “OLiMPS. openflow link-
layer multipath switching,” California Institute of Technology (CalTech),
Pasadena, CA (United States), Tech. Rep., 2014.

[31] N. Pho, D. R. Magri, F. F. Redigolo, B.-D. Kim, T. Feeney, H. L.
Morgan, C. J. Patel, C. Botka, and T. Cristina, “Data transfer in a science
DMZ using SDN with applications for precision medicine in cloud
and high-performance computing,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal.(SC15), 2015, pp. 1–4.

[32] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “OpenFlow random host
mutation: transparent moving target defense using software defined
networking,” in Proceedings of the first workshop on Hot topics in
software defined networks, 2012, pp. 127–132.

[33] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. Corrêa, S. C.
De Lucena, and M. F. Magalhães, “Virtual routers as a service: the route-
flow approach leveraging software-defined networks,” in Proceedings of
the 6th International Conference on Future Internet Technologies, 2011,
pp. 34–37.

[34] E. Balas and A. Ragusa, “SciPass: a 100gbps capable secure science
DMZ using OpenFlow and bro,” in Supercomputing 2014 conference
(SC14). Supercomputing 2014 conference (SC14) New Orleans,
Louisiana, 2014.

[35] S. Ramanathan, Y. Kanza, and B. Krishnamurthy, “SDProber: A software
defined prober for SDN,” in Proceedings of the Symposium on SDN
Research, 2018, pp. 1–7.

[36] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” in Proceed-
ings of the ACM SIGCOMM 2013 conference on SIGCOMM, 2013, pp.
27–38.

[37] J. Griffioen, K. Calvert, Z. Fei, S. Rivera, J. Chappell, M. Hayashida,
C. Carpenter, Y. Song, and H. Nasir, “VIP lanes: High-speed custom
communication paths for authorized flows,” in 2017 26th Interna-
tional Conference on Computer Communication and Networks (ICCCN).
IEEE, 2017, pp. 1–9.

[38] G. Lospoto, M. Rimondini, B. G. Vignoli, and G. Di Battista, “Re-
thinking virtual private networks in the software-defined era,” in 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM). IEEE, 2015, pp. 379–387.

[39] Broadcom, “BCM53346 64 gb/s multilayer switch product brief,” Prod-
uct Brief, 2020.

[40] H. Pan, H. Guan, J. Liu, W. Ding, C. Lin, and G. Xie, “The flowadapter:
Enable flexible multi-table processing on legacy hardware,” in Proceed-
ings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking, 2013, pp. 85–90.

[41] Z. Hang, Y. Wang, and S. Huang, “P4 transformer: Towards unified
programming for the data plane of software defined network,” in 2021
IEEE 45th Annual Computers, Software, and Applications Conference
(COMPSAC). IEEE, 2021, pp. 544–551.

[42] D. Hancock and J. Van der Merwe, “Hyper4: Using p4 to virtualize
the programmable data plane,” in Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies,
2016, pp. 35–49.

[43] P. G. Patra, C. E. Rothenberg, and G. Pongrácz, “Macsad: Multi-
architecture compiler system for abstract dataplanes (aka partnering p4
with odp),” in Proceedings of the 2016 ACM SIGCOMM Conference,
2016, pp. 623–624.

[44] “OpenDataPlane (ODP) users-guide,”
https://opendataplane.github.io/odp/users-guide/, accessed: 2022-02-10.


