An Integrated Active Measurement
Programming cnvironment

A design for a next-generation Internet Measurement Infrastructure

Matthew Luckie Shivani Hariprasac Raffaele Sommese
Brendon Jones Ken Keys Rid<>/ Mok
k clafty

PAM 2025

Outline

* Problem: unmet need for a sophisticated, wide-scale, topologically diverse active
measurement infrastructure.

* Spectrum of possible solutions; we'll review these.

Outline

* Problem: unmet need for a sophisticated, wide-scale, topologically diverse active
measurement infrastructure.

» Spectrum of possible solutions; we'll review these.

* Domain Specific Language (DSL) discussion at AIMS May 2023 workshop occurred over
multiple days. Idea:

- expose a set of measurement primitives (e.g., DNS, ping, traceroute, HT TP)
- expose a set of measurement vantage points
- users write applications that use these primitives enhanced with their logic

* In this talk, we'll outline our approach, architecture, implementation, and suggested code
structures. VWe Invite researchers to use our platform.

| east Restrictive SOlUthﬂ Spec_trum

Shell access to VPs

_Run code In containers on theV

An Integrated active measurement programming environmer

logic on-VE or In Infrastructure /

Use provided data

Most Restrictive

VPN access to send packets from VPs, logic off-VP

o

Run code to construct packet sequences in sandbox on the VP Scriptroute

Domaln Specific Language (

APl to use measurement primitives, logic elsewhere

PlanetlLab
cageNet
PacketlLab
4,
DSL)
Atlas, Ark
Atlas, Ark

Our Platform Goals

|. Easy to use. | he protocol stack, implementation, programming, and
sysadmin expertise required for measurement should be minimized.

Our Platform Goals

Easy to use. [he protocol stack, implementation, programming, and
sysadmin expertise required for measurement should be minimized.

Performant. [he delay between measurement and result st
ex reactive measurement

so that researchers can build comp

ould be small,
S

Our Platform Goals

Easy to use. [he protocol stack, implementation, programming, and
sysadmin expertise required for measurement should be minimized.

Performant. [he delay between measurement and result should be small,
so that researchers can build complex reactive measurements.

Interoperable. The components that we use should be off-the-shelf and
easlly deployable to maximize avenues of future deployment.

Our Platform Goals

Easy to use. [he protocol stack, implementation, programming, and
sysadmin expertise required for measurement should be minimized.

Performant. [he delay between measurement and result should be small,
so that researchers can build complex reactive measurements.

Interoperable. The components that we use should be off-the-shelf and
easlly deployable to maximize avenues of future deployment.

Site-host transparent. [he environment should allow platform operators
to accurately describe the types of measurements the VPs will do.

We deployed our platform onto
CAIDA’s Ark infrastructure, and

made all components open source.

System Architecture

System Architecture

We used scam
measurement

ber to

the VPs.

DIrOVIC

rimrtives on

c

Ping DNS Traceroute HTTP UDP Alias Resolution TBIT

(® () (% éVé m () 0B

Nt
" Control
(1) Scamper Channel

\\\\\\\
|||||||

A) 24
““““

P
\\\\\\
\\\\\\
.
\\\\\

(2) Central Server Vi
(Controller) E e) Unix domain socket

Raw Test Commands Raw Test Results
Y

(3) Programming [scamper.so] Python Library

Environment

(4) User Code / I \

/shortest—ping.py authns-delay.py = midar.py tslp.py\

reverse-traceroute.py serial-checker.py

_

o\

System Architecture

VWe configured scam

Her on each

VP to connect back to a central
server at CAIDA.

Ping DNS Traceroute HTTP UDP Alias Resolution TBIT

W (p (@ (B .
\’ Control

(1) Scamper Channel

:::::::
|||||||

A) 24
““““

4
IIIIII
||||||
.
|||||

(2) Central Server Vi
(Controller) E e) Unix domain socket

Raw Test Commands Raw Test Results

Y
(3) Programming [scamper.so] Python Library
Environment
(4) User Code / I \
@ =

shortest-ping.py authns-delay.py mudar.py tslp.py

reverse-traceroute.py serial-checker.py

_

i
]

System Architecture

/V

We used scamper’s remote

controlle
wWhiC

/5

N

to manage VPs,
rovides a

Mmultiplexec
to all VPs wir

(Mux) Interface

h a single socket.

Ping DNS Traceroute HTTP UDP Alias Resolution TBIT

B (B (2 éVé) ®

(4) User Code

N~T
N2

Control
Channel

(1) Scamper

lllllll

\\\\\\

.

(2) Central Server
(Controller) &

“““““““
\\\\\\
\\\\\\

.
\\\\\

) Unix domain socket

Raw Test Commands

Y

Raw Test Results

Environment

(3) Programming [scamper.so] Python Library

e

-

_

shortest-ping.py

reverse-traceroute.py

o

authns-delay.py = mudar.py tslp.py

serial-checker.py

N

System Architecture

VWe built a Python
module to Interface with these
VPs, providing methods to senc
measurement requests to VPs,

and Interpret the responses.

\

Module Is written in ~ | 2K
ines of Cython

Ping DNS Traceroute HTTP UDP Alias Resolution TBIT

0,8 & éé w

() p \\\\\\\\
|||||
''''''''
\\\\\
|||||
.
|||||

(2) Central Server

Control

Channel

(Controller) k:f Unix domain socket
Raw Test Commands Raw Test Results
Y
(3) Programming [scamper.so] Python Library
Environment
(4) User Code
4 : :)

shortest-ping.py authns-delay.py mudar.py tslp.py

_

reverse-traceroute.py

serial-checker.py

i/
3

Ping DNS Traceroute HTTP UDP Alias Resolution TBIT

System Architecture
CRCNG éé CRG
\’ Control

Channel

() p \\\\\\\\\
|||||
''''''''
\\\\\
|||||
.
|||||

(2) Central Server i
(Controller) E e) Unix domain socket

Raw Test Commands Raw Test Results

User code Interfaces with the

system’s capabillities using the (3) Programming | ¢camberso | Python Library
DythOﬂ mMmodule Environment

\ (4) User Code / I \
~

shortest-ping.py authns-delay.py mudar.py tslp.py

reverse-traceroute.py serial-checker.py

System Architecture

Ping DNS Traceroute HTTP UDP Alias Resolution TBIT

(vp) (vp) (v éé (ve) () 0
‘. St Co

(2) Central Server | |
Currently, user code runs on the (Controller) | Unix domsie

RIS RSH/SEEM dS the controller: Raw Test Commands Raw Test Results
Y

But 1t I1s possible to run user Environment

code In aVM or container

SC

(3) Programming [scamper.so] Python Library

(4) User Code / I \
barated from the controller. <
shortest-ping.py authns-delay.py mudar.py tslp.py

reverse-traceroute.py serial-checker.py

J

First Example: List of VPs
¢ python3 mux-vps.py /run/ark/mux

\ [ocation of

import sys
from scamper import ScamperCtrl

ctrl = ScamperCtrl(mux=sys.argvl|1])

\ Many scripts will

begin with code
similar to this

MuXx socket

16

First Example: List of VPs
¢ python3 mux-vps.py /run/ark/mux

ocation of
MuXx socket

import sys
from scamper import ScamperCtrl

ctrl = ScamperCtrl(mux=sys.argvl|1])

for vp in ctrl.vps():
orint(vp.name)

17

Second Example: List of VPs in a Country
¢ python3 mux-vps-cc.py /run/ark/mux NZ

‘\\\\\\ ocation of

MuXx socket

import sys
from scamper import ScamperCtrl

ctrl = ScamperCtrl(mux=sys.argvl|1])
vps = [vp for vp in ctrl.vps() if vp.cc == sys.argv[2]]

for vp 1n vps:
orint(vp.name)

18

Synchronous Blocking: single ping

Many scripts will
import sys y P

from scamper import ScamperCtrl begin with code
similar to this
if len(sys.argv) != 3:
print("usage: single-ping.py $mux $dst")
sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv([1])

19

Synchronous Blocking: single ping

Bt << Many scripts will

from scamper import ScamperCtrl begin with code

similar to this
if len(sys.argv) != 3:

print("usage: single-ping.py $mux $dst")
sys.exit(-1) Connect to one

scamper instance.
ctrl = ScamperCtrl(mux=sys.argv([1])
ctrl.add _vps(ctrl.vps()[0])

20

Synchronous Blocking: single ping

Bt << Many scripts will

from scamper import ScamperCtrl begin with code

| similar to this
if len(sys.argv) != 3:

print("usage: single-ping.py $mux $dst")
sys.exit(-1) Connect to one

scamper instance.
ctrl = ScamperCtrl(mux=sys.argv([1])
ctrl.add _vps(ctrl.vps()[0])

' . I o
ping = ctrl.do_ping(sys.argvl2], sync=True) < ssue ping

synchronously

21

Synchronous Blocking: single ping

Bt << Many scripts will

from scamper import ScamperCtrl begin with code

similar to this
if len(sys.argv) != 3:

print("usage: single-ping.py $mux $dst")
sys.exit(-1) Connect to one

scamper instance.
ctrl = ScamperCtrl(mux=sys.argv([1])
ctrl.add _vps(ctrl.vps()[0])

Issue pin
ping = ctrl.do_ping(sys.argvl2], sync=True) «——— pIing

synchronously

Synchronous: : : :
4 Use in small-scale, E.g. Single pings,
Measurement must . :
single-VP, simple traceroutes, DNS
complete before :
measurements lookups, HT TP queries.

script continues
22

Synchronous Blocking: single ping

Bt sy Many scripts will

from scamper import ScamperCtrl begin with code

similar to this
if len(sys.argv) != 3:
print("usage: single-ping.py $mux $dst")
sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv([1])
ctrl.add _vps(ctrl.vps()[0])

ning = ctrl.do_ping(sys.argv[2], sync=True) «———

Connect to one
scamper instance.

Issue ping

synchronously

1f ping.min_rtt 1s not None:

print(f"{ping.inst.name} {(ping.min_rtt.total_seconds()*1000):.1f} ms")
glise:

print(f"no responses for {sys.argv[2]}")

23

Asynchron

if len(sys.argv) != 3:
print("usage: shortes
sys.exit(-1)

ctrl = ScamperCtrl(mux=sy
ctrl.add_vps(ctrl.vps())

ous Blocking: Shortest Ping

t-ping.py $mux $ip"')

Connect to all scamper instances.
s.argv[1l])

24

Asynchronous Blocking: Shortest Ping

if len(sys.argv) != 3:
print("usage: shortest-ping.py $mux $ip")
sys.exit(-1)

Connect to all scamper instances.
ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()) Issue pings on all VPs,
| S

ctrl.do_ping(sys.argv[2], inst=ctrl.instances()) i
which run async

25

Asynchronous Blocking: Shortest Ping

if len(sys.argv) != 3:
print("usage: shortest-ping.py $mux $ip")
sys.exit(-1)

Connect to all scamper instances.
ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()) Issue pings on all VPs,
| S

ctrl.do_ping(sys.argv[2], inst=ctrl.instances()) i
which run async

Asynchronous: issue Use in small/mid-scale,
multiple measurements, multi-VP reactive
stop to collect results. measurements.

E.g. Geolocating single IP address,
measuring RTT of authoritative

hameservers for a zone
26

Asynchronous Blocking: Shortest Ping

if len(sys.argv) != 3:
print("usage: shortest-ping.py $mux $ip"')
sys.exit(-1)

Connect to all scamper instances.
ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()) :
ctrl.do_ping(sys.argv[2], inst=ctrl.instances()) +«—— ISSl,le pings on all VPs,
which run async

min_rtt = None Block for responses, up to 10s
min_vp = None g P £ i
for o in ctrl.responses(timeout=timedelta(seconds=10)):

27

Asynchronous Blocking: Shortest Ping

if len(sys.argv) != 3:
print("usage: shortest-ping.py $mux $ip"')
sys.exit(-1)

Connect to all scamper instances.
ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()) Issue pings on all VPs,
| S

ctrl.do_ping(sys.argv[2], inst=ctrl.instances()) :
which run async

min_rtt = None
— __—— Block for responses, up to 10s

min_vp = None
for o in ctrl.responses(timeout=timedelta(seconds=10)):

if o.min rtt is not None and (min rtt is None or min rtt > o.min rtt):

min_rtt = o.min_rtt] , Sel

min_vp = o.inst +———— Determine VP with minimum RTT

1T min_rtt 1s not None:
print(f"{min_vp.name} {(min_rtt.total seconds()*1000):.1f} ms")

else:
print(f"no responses for {sys.argv([2]}") 28

Mixture of Blocking: Nameserver Delay

if len(sys.argv) != 3:
print("usage: authns-delay.py $mux $zone'") Sync.hronous
sys.exit(-1) Blocking query
to get NSes
ctrl = ScamperCtrl(mux=sys.argv|[1l])
ctrl.add _vps(ctrl.vps()[0]) l
get the list of NS for the zone

o = ctrl.do_dns(sys.argv|[2], qtype='NS', wait_timeout=1, sync=True)

29

Mixture of Blocking: Nameserver Delay

if len(sys.argv) != 3:
print("usage: authns-delay.py $mux $zone") Sync.hronous
sys.exit(-1) Blocking query
to get NSes
ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add _vps(ctrl.vps()[0]) l
get the list of NS for the zone

o = ctrl.do_dns(sys.argv[2], qtype='NS', wait timeout=1l, sync=True)

1ssue queries for the IP addresses of the authoritative servers
for ns in set(o.ans_nses()):
ctrl.do_dns(ns, gtype='A', wait_timeout=1)

ctrl.do_dns(ns, qtype='AAAA', wait_timeout=1)
Asynchronous

Queries for
NS IPs 30

Mixture of Blocking: Nameserver Delay

collect the unique addresses . .
addr = {} Build dict
for o in ctrl.responses(timeout=10): mapping IP

for a in o.ans addrs():

addr[al = o.gname to NS name

31

Mixture of Blocking: Nameserver Delay

collect the unique addresses

addr = {} Build dict

for o in ctrl.responses(timeout=10): mapping IP
for a in o.ans addrs(): NS

addr[al = o.gname to Naime

collect RTTs for the unique IP addresses

for a 1n addr:
ctrl.do_ping(a) Conduct async

rtts = {} | pings to all IPs,
for o in ctrl.responses(timeout=10): collact raciis

rttslo.dst] = o.min_rtt

32

Mixture of Blocking: Nameserver Delay

collect the unique addresses

addr = {} Build dict

for o in ctrl.responses(timeout=10): mapping IP
for a in o.ans addrs(): NS

addr[al = o.gname to Naime

collect RTTs for the unique IP addresses

for a 1n addr:
ctrl.do_ping(a) Conduct async

rtts = {} | pings to all IPs,
for o in ctrl.responses(timeout=10): collact raciis

rttslo.dst] = o.min_rtt

print authns by delay Print NS
for a in dict(sorted(rtts.items(), key=cmp_to_key(rttcmp))):
print(f"{addr[al} {a} " + sorted by
(f"{(rttsl[a].total seconds() *x 1000):.1f}" RTT
if rtts[a] is not None else "??7?")) 33

Documentation

scamper python module documentation » Introduction

Table of Contents

Introduction
= Interacting with Scamper
Processes

Simple Parallel
Measurement:
Shortest Ping
Reactive
Measurement: RTTs
to Authoritative
Nameservers
Dynamic Event-
driven Measurement

= Reading and Writing Files
API Reference
= Classes for Managing
Scamper

ScamperCtrl
ScamperlInst
ScamperVp

ScamperTask

ScamperInstError

scamper — interact with scamper

Introduction

scamper is a tool that actively pro
topology and performance. The s
scamper module provides conven
scamper processes and data. The
classes for interacting with runnin
and related classes) and classes
ed with scamper (ScamperFile).
that store measurement results. T
scamper module include ping, tra
UDP probes, and packet capture.

Interacting with Scam

It iIs nossible to interact with local

scampe

r/python/

-nvironment I1s thoroughly documented at
nttps://www.caida.org/catalog/software/

* We provided the documentation to LLMs

- asked the LLM to write measurement
scripts.

- they ¢

@l d SIS GIR

often

need twea

able job, but scripts
<INg.

34

https://www.caida.org/catalog/software/scamper/python/
https://www.caida.org/catalog/software/scamper/python/

Summary

- We bullt an integrated active measurement program

environment, where we provide a programming env

ming
ronment that

exposes measurement capabllities on distributed vantage points

* We recently held a successful hackathon the weekend before AIMS
2025 where participants built scripts to collect and analyze data

across different topics (topology, DNS, web)

* We Invite researchers to use our platform. ark-info@caida.org

https://www.caida.org/catalog/software/scamper/python/

35

https://www.caida.org/catalog/software/scamper/python/

Acknowledgments

» This work was supported by NSF grants OAC-2131987,
CNS-2120399, CNS-2323219,and CNS-2212241.

» T his paper represents only the position of the authors

36

An Integrated Active Measurement
Programming cnvironment

A design for a next-generation Internet Measurement Infrastructure

Matthew Luckie Shivani Hariprasac Raffaele Sommese
Brendon Jones Ken Keys Rid<>/ Mok
k clafty

PAM 2025

Domain Specific Language: Pros + Cons

M High-level abstractions for common
measurements that have multiple
complicated steps

M Easier for non-programmers

™ Implementation of primitive is probably
petter than a roll-your-own

M Harder to do bad things; send bad

packets, too many packets, write to local
disk, consume CPU

M Can describe capabilities to VP hosts

Domain Specific Language: Pros + Cons

M High-level abstractions for common
measurements that have multiple
complicated steps

M Easier for non-programmers

™ Implementation of primitive is probably
petter than a roll-your-own

M Harder to do bad things; send bad

packets, too many packets, write to local
disk, consume CPU

M Can describe capabilities to VP hosts

[] DSL still needs to be learned

[] Base language (Python, Lua, Perl, Ruby)
might not be well-known

] Limited scope / cut down; might make

[] Researchers re
exposing usefu

[J Researchers reliant on
<eeping It up to date -
modern systems, moc

it difficult to do some types of tasks

ant on DSL maintainers

primitives anc

logic

DSL malRiEEes
‘0 Work on
ern protocols

39

Approaches to managing measurements

Approach

Synchronous
Blocking

Summary

measurement must
complete before
script continues

When to use

Small-scale,
single-VE simple
measurements

S

ngle
ookl

Examples

bINgs, traceroutes, DNS

ps, H I TP queries, etc.

40

Approaches to managing measurements

Approach Summary When to use
S measurement must Small-scale,
ynchronous | |
Blockin complete before single-VE simple
& script continues measurements
Asynchronous ssue multiple Srall/Mid-scale,
Blocking measurements, stop multi-VP react

S

ve measuring RI [o
(default) to collect results measurement

Examples

Single pings, traceroutes,

ookups, H T [P queries,

DNS
e,

Geolocating single |IP address,

- authorrtative

nameservers for a zone

41

Approaches to managing measurements

Approach Summary When to use Examples
l-scal | |
Synchronous B | e S Single pings, traceroutes, DNS
Blocki complete before single-VE simple ookuns HITTP ateric:
FNTS script continues measurements P> y e
Asynchronous issue multiple Small/Mid-scale, (Geolocating single IP address,
Blocking measurements, stop multi-VP reactive measuring RT T of authoritative
(default) to collect results measurements nameservers for a zone
A event-driven streaming Geolocating millions of P
synchronous Internet-scale 5 |
Non-Blocki of measurements, SRR addresses, Internet-scale Alias
OIS reacting to results resolution, Trufflehunter

42

