
An Integrated Active Measurement
Programming Environment

A design for a next-generation Internet Measurement Infrastructure

Matthew Luckie Shivani Hariprasad Raffaele Sommese
Brendon Jones Ken Keys Ricky Mok

k claffy

PAM 2025
w w w .caida.org

Outline
• Problem: unmet need for a sophisticated, wide-scale, topologically diverse active

measurement infrastructure.

• Spectrum of possible solutions; we’ll review these.

2

Outline
• Problem: unmet need for a sophisticated, wide-scale, topologically diverse active

measurement infrastructure.

• Spectrum of possible solutions; we’ll review these.

• Domain Specific Language (DSL) discussion at AIMS May 2023 workshop occurred over
multiple days. Idea:

- expose a set of measurement primitives (e.g., DNS, ping, traceroute, HTTP)

- expose a set of measurement vantage points

- users write applications that use these primitives enhanced with their logic

• In this talk, we’ll outline our approach, architecture, implementation, and suggested code
structures. We invite researchers to use our platform.

3

Solution Spectrum

4

Shell access to VPs PlanetLab

Run code in containers on the VPs EdgeNet

Run code to construct packet sequences in sandbox on the VP Scriptroute

VPN access to send packets from VPs, logic off-VP PacketLab

An integrated active measurement programming environment,
logic on-VP, or in infrastructure / Domain Specific Language (DSL)

API to use measurement primitives, logic elsewhere Atlas, Ark

Use provided data Atlas, Ark

Most Restrictive

Least Restrictive

Our Platform Goals
1. Easy to use. The protocol stack, implementation, programming, and

sysadmin expertise required for measurement should be minimized.

5

Our Platform Goals
1. Easy to use. The protocol stack, implementation, programming, and

sysadmin expertise required for measurement should be minimized.
2. Performant. The delay between measurement and result should be small,

so that researchers can build complex reactive measurements.

6

Our Platform Goals
1. Easy to use. The protocol stack, implementation, programming, and

sysadmin expertise required for measurement should be minimized.
2. Performant. The delay between measurement and result should be small,

so that researchers can build complex reactive measurements.
3. Interoperable. The components that we use should be off-the-shelf and

easily deployable to maximize avenues of future deployment.

7

Our Platform Goals
1. Easy to use. The protocol stack, implementation, programming, and

sysadmin expertise required for measurement should be minimized.
2. Performant. The delay between measurement and result should be small,

so that researchers can build complex reactive measurements.
3. Interoperable. The components that we use should be off-the-shelf and

easily deployable to maximize avenues of future deployment.
4. Site-host transparent. The environment should allow platform operators

to accurately describe the types of measurements the VPs will do.

8

We deployed our platform onto
CAIDA’s Ark infrastructure, and

made all components open source.

System Architecture

9

System Architecture

10

We used scamper to provide
measurement primitives on

the VPs.

(2) Central Server

VP VP VPVP VP VP VP

scamper.so

Control
Channel

Unix domain socket

TBIT

(1) Scamper

reverse-traceroute.py serial-checker.py

(4) User Code

shortest-ping.py tslp.pymidar.pyauthns-delay.py

Environment
(3) Programming Python Library

Raw Test Results

Ping DNS Traceroute HTTP UDP Alias Resolution

Raw Test Commands

(Controller)

System Architecture

11

We configured scamper on each
VP to connect back to a central

server at CAIDA.

(2) Central Server

VP VP VPVP VP VP VP

scamper.so

Control
Channel

Unix domain socket

TBIT

(1) Scamper

reverse-traceroute.py serial-checker.py

(4) User Code

shortest-ping.py tslp.pymidar.pyauthns-delay.py

Environment
(3) Programming Python Library

Raw Test Results

Ping DNS Traceroute HTTP UDP Alias Resolution

Raw Test Commands

(Controller)

System Architecture

12

We used scamper’s remote
controller to manage VPs,

which provides a
multiplexed (mux) interface

to all VPs with a single socket.

(2) Central Server

VP VP VPVP VP VP VP

scamper.so

Control
Channel

Unix domain socket

TBIT

(1) Scamper

reverse-traceroute.py serial-checker.py

(4) User Code

shortest-ping.py tslp.pymidar.pyauthns-delay.py

Environment
(3) Programming Python Library

Raw Test Results

Ping DNS Traceroute HTTP UDP Alias Resolution

Raw Test Commands

(Controller)

System Architecture

13

We built a Python
module to interface with these
VPs, providing methods to send
measurement requests to VPs,
and interpret the responses.

Module is written in ~12K
lines of Cython

(2) Central Server

VP VP VPVP VP VP VP

scamper.so

Control
Channel

Unix domain socket

TBIT

(1) Scamper

reverse-traceroute.py serial-checker.py

(4) User Code

shortest-ping.py tslp.pymidar.pyauthns-delay.py

Environment
(3) Programming Python Library

Raw Test Results

Ping DNS Traceroute HTTP UDP Alias Resolution

Raw Test Commands

(Controller)

System Architecture

14

User code interfaces with the
system’s capabilities using the

Python module

(2) Central Server

VP VP VPVP VP VP VP

scamper.so

Control
Channel

Unix domain socket

TBIT

(1) Scamper

reverse-traceroute.py serial-checker.py

(4) User Code

shortest-ping.py tslp.pymidar.pyauthns-delay.py

Environment
(3) Programming Python Library

Raw Test Results

Ping DNS Traceroute HTTP UDP Alias Resolution

Raw Test Commands

(Controller)

System Architecture

15

Currently, user code runs on the
same system as the controller.

But it is possible to run user
code in a VM or container

separated from the controller.

(2) Central Server

VP VP VPVP VP VP VP

scamper.so

Control
Channel

Unix domain socket

TBIT

(1) Scamper

reverse-traceroute.py serial-checker.py

(4) User Code

shortest-ping.py tslp.pymidar.pyauthns-delay.py

Environment
(3) Programming Python Library

Raw Test Results

Ping DNS Traceroute HTTP UDP Alias Resolution

Raw Test Commands

(Controller)

First Example: List of VPs

16

import sys
from scamper import ScamperCtrl

ctrl = ScamperCtrl(mux=sys.argv[1])

$ python3 mux-vps.py /run/ark/mux

Location of
mux socket

Many scripts will
begin with code
similar to this

First Example: List of VPs

17

import sys
from scamper import ScamperCtrl

ctrl = ScamperCtrl(mux=sys.argv[1])

for vp in ctrl.vps():
 print(vp.name)

$ python3 mux-vps.py /run/ark/mux

Location of
mux socket

Second Example: List of VPs in a Country

18

import sys
from scamper import ScamperCtrl

ctrl = ScamperCtrl(mux=sys.argv[1])

vps = [vp for vp in ctrl.vps() if vp.cc == sys.argv[2]]
for vp in vps:
 print(vp.name)

$ python3 mux-vps-cc.py /run/ark/mux NZ

Location of
mux socket

Synchronous Blocking: single ping

19

import sys
from scamper import ScamperCtrl

if len(sys.argv) != 3:
 print("usage: single-ping.py $mux $dst")
 sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv[1])

Many scripts will
begin with code
similar to this

Synchronous Blocking: single ping

20

import sys
from scamper import ScamperCtrl

if len(sys.argv) != 3:
 print("usage: single-ping.py $mux $dst")
 sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()[0])

Connect to one
scamper instance.

Many scripts will
begin with code
similar to this

Synchronous Blocking: single ping

21

import sys
from scamper import ScamperCtrl

if len(sys.argv) != 3:
 print("usage: single-ping.py $mux $dst")
 sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()[0])
ping = ctrl.do_ping(sys.argv[2], sync=True)

Connect to one
scamper instance.

Issue ping
synchronously

Many scripts will
begin with code
similar to this

Synchronous Blocking: single ping

22

import sys
from scamper import ScamperCtrl

if len(sys.argv) != 3:
 print("usage: single-ping.py $mux $dst")
 sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()[0])
ping = ctrl.do_ping(sys.argv[2], sync=True)

Connect to one
scamper instance.

Issue ping
synchronously

Many scripts will
begin with code
similar to this

Synchronous:
Measurement must

complete before
script continues

Use in small-scale,
single-VP, simple
measurements

E.g. Single pings,
traceroutes, DNS

lookups, HTTP queries.

Synchronous Blocking: single ping

23

import sys
from scamper import ScamperCtrl

if len(sys.argv) != 3:
 print("usage: single-ping.py $mux $dst")
 sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()[0])
ping = ctrl.do_ping(sys.argv[2], sync=True)

if ping.min_rtt is not None:
 print(f"{ping.inst.name} {(ping.min_rtt.total_seconds()*1000):.1f} ms")
else:
 print(f"no responses for {sys.argv[2]}")

Connect to one
scamper instance.

Many scripts will
begin with code
similar to this

Issue ping
synchronously

Asynchronous Blocking: Shortest Ping

24

if len(sys.argv) != 3:
 print("usage: shortest-ping.py $mux $ip")
 sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps())

Connect to all scamper instances.

Asynchronous Blocking: Shortest Ping

25

if len(sys.argv) != 3:
 print("usage: shortest-ping.py $mux $ip")
 sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps())
ctrl.do_ping(sys.argv[2], inst=ctrl.instances())

Issue pings on all VPs,
which run async

Connect to all scamper instances.

Asynchronous Blocking: Shortest Ping

26

if len(sys.argv) != 3:
 print("usage: shortest-ping.py $mux $ip")
 sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps())
ctrl.do_ping(sys.argv[2], inst=ctrl.instances())

Issue pings on all VPs,
which run async

Connect to all scamper instances.

Asynchronous: issue
multiple measurements,
stop to collect results.

Use in small/mid-scale,
multi-VP reactive
measurements.

E.g. Geolocating single IP address,
measuring RTT of authoritative

nameservers for a zone

Asynchronous Blocking: Shortest Ping

27

if len(sys.argv) != 3:
 print("usage: shortest-ping.py $mux $ip")
 sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps())
ctrl.do_ping(sys.argv[2], inst=ctrl.instances())

min_rtt = None
min_vp = None
for o in ctrl.responses(timeout=timedelta(seconds=10)):

Connect to all scamper instances.

Issue pings on all VPs,
which run async

Block for responses, up to 10s

Asynchronous Blocking: Shortest Ping

28

if len(sys.argv) != 3:
 print("usage: shortest-ping.py $mux $ip")
 sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps())
ctrl.do_ping(sys.argv[2], inst=ctrl.instances())

min_rtt = None
min_vp = None
for o in ctrl.responses(timeout=timedelta(seconds=10)):
 if o.min_rtt is not None and (min_rtt is None or min_rtt > o.min_rtt):
 min_rtt = o.min_rtt
 min_vp = o.inst

if min_rtt is not None:
 print(f"{min_vp.name} {(min_rtt.total_seconds()*1000):.1f} ms")
else:
 print(f"no responses for {sys.argv[2]}")

Connect to all scamper instances.

Issue pings on all VPs,
which run async

Block for responses, up to 10s

Determine VP with minimum RTT

if len(sys.argv) != 3:
 print("usage: authns-delay.py $mux $zone")
 sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()[0])

get the list of NS for the zone
o = ctrl.do_dns(sys.argv[2], qtype='NS', wait_timeout=1, sync=True)

Mixture of Blocking: Nameserver Delay

29

Synchronous
Blocking query

to get NSes

if len(sys.argv) != 3:
 print("usage: authns-delay.py $mux $zone")
 sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()[0])

get the list of NS for the zone
o = ctrl.do_dns(sys.argv[2], qtype='NS', wait_timeout=1, sync=True)

issue queries for the IP addresses of the authoritative servers
for ns in set(o.ans_nses()):
 ctrl.do_dns(ns, qtype='A', wait_timeout=1)
 ctrl.do_dns(ns, qtype='AAAA', wait_timeout=1)

Mixture of Blocking: Nameserver Delay

30

Synchronous
Blocking query

to get NSes

Asynchronous
Queries for

NS IPs

31

collect the unique addresses
addr = {}
for o in ctrl.responses(timeout=10):
 for a in o.ans_addrs():
 addr[a] = o.qname

Mixture of Blocking: Nameserver Delay
Build dict

mapping IP
to NS name

32

collect the unique addresses
addr = {}
for o in ctrl.responses(timeout=10):
 for a in o.ans_addrs():
 addr[a] = o.qname

collect RTTs for the unique IP addresses
for a in addr:
 ctrl.do_ping(a)
rtts = {}
for o in ctrl.responses(timeout=10):
 rtts[o.dst] = o.min_rtt

Mixture of Blocking: Nameserver Delay
Build dict

mapping IP
to NS name

Conduct async
pings to all IPs,
collect results

33

collect the unique addresses
addr = {}
for o in ctrl.responses(timeout=10):
 for a in o.ans_addrs():
 addr[a] = o.qname

collect RTTs for the unique IP addresses
for a in addr:
 ctrl.do_ping(a)
rtts = {}
for o in ctrl.responses(timeout=10):
 rtts[o.dst] = o.min_rtt

print authns by delay
for a in dict(sorted(rtts.items(), key=cmp_to_key(rttcmp))):
 print(f"{addr[a]} {a} " +
 (f"{(rtts[a].total_seconds() * 1000):.1f}"
 if rtts[a] is not None else "???"))

Mixture of Blocking: Nameserver Delay
Build dict

mapping IP
to NS name

Conduct async
pings to all IPs,
collect results

Print NS
sorted by

RTT

Documentation

• Environment is thoroughly documented at
https://www.caida.org/catalog/software/
scamper/python/

• We provided the documentation to LLMs

- asked the LLM to write measurement
scripts.

- they do a reasonable job, but scripts
often need tweaking.

34

https://www.caida.org/catalog/software/scamper/python/
https://www.caida.org/catalog/software/scamper/python/

Summary

• We built an integrated active measurement programming
environment, where we provide a programming environment that
exposes measurement capabilities on distributed vantage points

• We recently held a successful hackathon the weekend before AIMS
2025 where participants built scripts to collect and analyze data
across different topics (topology, DNS, web)

• We invite researchers to use our platform. ark-info@caida.org

35
https://www.caida.org/catalog/software/scamper/python/

https://www.caida.org/catalog/software/scamper/python/

Acknowledgments

• This work was supported by NSF grants OAC-2131987,
CNS-2120399, CNS-2323219, and CNS-2212241.

• This paper represents only the position of the authors

36

An Integrated Active Measurement
Programming Environment

A design for a next-generation Internet Measurement Infrastructure

Matthew Luckie Shivani Hariprasad Raffaele Sommese
Brendon Jones Ken Keys Ricky Mok

k claffy

PAM 2025
w w w .caida.org

Domain Specific Language: Pros + Cons
High-level abstractions for common
measurements that have multiple
complicated steps

Easier for non-programmers

Implementation of primitive is probably
better than a roll-your-own

Harder to do bad things; send bad
packets, too many packets, write to local
disk, consume CPU

Can describe capabilities to VP hosts
38

Domain Specific Language: Pros + Cons
High-level abstractions for common
measurements that have multiple
complicated steps

Easier for non-programmers

Implementation of primitive is probably
better than a roll-your-own

Harder to do bad things; send bad
packets, too many packets, write to local
disk, consume CPU

Can describe capabilities to VP hosts
39

DSL still needs to be learned

Base language (Python, Lua, Perl, Ruby)
might not be well-known

Limited scope / cut down; might make
it difficult to do some types of tasks

Researchers reliant on DSL maintainers
exposing useful primitives and logic

Researchers reliant on DSL maintainers
keeping it up to date to work on
modern systems, modern protocols

Approaches to managing measurements

40

Approach Summary When to use Examples

Synchronous
Blocking

measurement must
complete before
script continues

Small-scale,
single-VP, simple
measurements

Single pings, traceroutes, DNS
lookups, HTTP queries, etc.

Approaches to managing measurements

41

Approach Summary When to use Examples

Synchronous
Blocking

measurement must
complete before
script continues

Small-scale,
single-VP, simple
measurements

Single pings, traceroutes, DNS
lookups, HTTP queries, etc.

Asynchronous
Blocking
(default)

issue multiple
measurements, stop

to collect results

Small/Mid-scale,
multi-VP reactive
measurements

Geolocating single IP address,
measuring RTT of authoritative

nameservers for a zone

Approaches to managing measurements

42

Approach Summary When to use Examples

Synchronous
Blocking

measurement must
complete before
script continues

Small-scale,
single-VP, simple
measurements

Single pings, traceroutes, DNS
lookups, HTTP queries, etc.

Asynchronous
Blocking
(default)

issue multiple
measurements, stop

to collect results

Small/Mid-scale,
multi-VP reactive
measurements

Geolocating single IP address,
measuring RTT of authoritative

nameservers for a zone

Asynchronous
Non-Blocking

event-driven streaming
of measurements,
reacting to results

Internet-scale
measurement

Geolocating millions of IP
addresses, Internet-scale Alias

resolution, Trufflehunter

