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measurement infrastructure.
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* Problem: unmet need for a sophisticated, wide-scale, topologically diverse active
measurement infrastructure.

» Spectrum of possible solutions; we'll review these.

* Domain Specific Language (DSL) discussion at AIMS May 2023 workshop occurred over
multiple days. Idea:

- expose a set of measurement primitives (e.g., DNS, ping, traceroute, HT TP)
- expose a set of measurement vantage points
- users write applications that use these primitives enhanced with their logic

* In this talk, we'll outline our approach, architecture, implementation, and suggested code
structures. VWe Invite researchers to use our platform.
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Our Platform Goals

Easy to use. [ he protocol stack, implementation, programming, and
sysadmin expertise required for measurement should be minimized.

Performant. [ he delay between measurement and result should be small,
so that researchers can build complex reactive measurements.

Interoperable. The components that we use should be off-the-shelf and
easlly deployable to maximize avenues of future deployment.

Site-host transparent. [ he environment should allow platform operators
to accurately describe the types of measurements the VPs will do.

We deployed our platform onto
CAIDA’s Ark infrastructure, and

made all components open source.
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System Architecture

VWe configured scam

Her on each

VP to connect back to a central
server at CAIDA.

Ping DNS Traceroute HTTP UDP Alias Resolution TBIT

W ( p (@ (B .
\’ Control

(1) Scamper Channel

:::::::
|||||||

A ) 24
““““

4
IIIIII
||||||
.
|||||

(2) Central Server Vi
(Controller) E e ) Unix domain socket

Raw Test Commands Raw Test Results

Y
(3) Programming [scamper.so] Python Library
Environment
(4) User Code / I \
@ =

shortest-ping.py  authns-delay.py  mudar.py tslp.py

reverse-traceroute.py serial-checker.py

\_

i
]



System Architecture
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System Architecture

VWe built a Python
module to Interface with these
VPs, providing methods to senc
measurement requests to VPs,

and Interpret the responses.

\

Module Is written in ~ | 2K
ines of Cython
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System Architecture

Ping DNS Traceroute HTTP UDP Alias Resolution TBIT

(vp) (vp) (v éé (ve) () 0
‘. St Co

(2) Central Server | |
Currently, user code runs on the (Controller) | Unix domsie

RIS RSH/SEEM dS the controller: Raw Test Commands Raw Test Results
Y

But 1t I1s possible to run user Environment

code In aVM or container

SC

(3) Programming [scamper.so] Python Library

(4) User Code / I \
barated from the controller. <
shortest-ping.py  authns-delay.py  mudar.py tslp.py

reverse-traceroute.py serial-checker.py

J




First Example: List of VPs
¢ python3 mux-vps.py /run/ark/mux

\ [ ocation of

import sys
from scamper import ScamperCtrl

ctrl = ScamperCtrl(mux=sys.argvl|1])

\ Many scripts will

begin with code
similar to this

MuXx socket

16



First Example: List of VPs
¢ python3 mux-vps.py /run/ark/mux

ocation of
MuXx socket

import sys
from scamper import ScamperCtrl

ctrl = ScamperCtrl(mux=sys.argvl|1])

for vp in ctrl.vps():
orint(vp.name)
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Second Example: List of VPs in a Country
¢ python3 mux-vps-cc.py /run/ark/mux NZ

‘\\\\\\ ocation of

MuXx socket

import sys
from scamper import ScamperCtrl

ctrl = ScamperCtrl(mux=sys.argvl|1])
vps = [vp for vp in ctrl.vps() if vp.cc == sys.argv[2]]

for vp 1n vps:
orint(vp.name)

18



Synchronous Blocking: single ping

Many scripts will
import sys y P

from scamper import ScamperCtrl begin with code
similar to this
if len(sys.argv) != 3:
print("usage: single-ping.py $mux $dst")
sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv([1])

19



Synchronous Blocking: single ping

Bt << Many scripts will

from scamper import ScamperCtrl begin with code

similar to this
if len(sys.argv) != 3:

print("usage: single-ping.py $mux $dst")
sys.exit(-1) Connect to one

scamper instance.
ctrl = ScamperCtrl(mux=sys.argv([1])
ctrl.add _vps(ctrl.vps()[0])
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Synchronous Blocking: single ping

Bt << Many scripts will

from scamper import ScamperCtrl begin with code

| similar to this
if len(sys.argv) != 3:

print("usage: single-ping.py $mux $dst")
sys.exit(-1) Connect to one

scamper instance.
ctrl = ScamperCtrl(mux=sys.argv([1])
ctrl.add _vps(ctrl.vps()[0])

' . I o
ping = ctrl.do_ping(sys.argvl2], sync=True) < ssue ping

synchronously
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Synchronous Blocking: single ping

Bt << Many scripts will

from scamper import ScamperCtrl begin with code

similar to this
if len(sys.argv) != 3:

print("usage: single-ping.py $mux $dst")
sys.exit(-1) Connect to one

scamper instance.
ctrl = ScamperCtrl(mux=sys.argv([1])
ctrl.add _vps(ctrl.vps()[0])

Issue pin
ping = ctrl.do_ping(sys.argvl2], sync=True) «——— pIing

synchronously

Synchronous: : : :
4 Use in small-scale, E.g. Single pings,
Measurement must . :
single-VP, simple traceroutes, DNS
complete before :
measurements lookups, HT TP queries.

script continues
22



Synchronous Blocking: single ping

Bt sy Many scripts will

from scamper import ScamperCtrl begin with code

similar to this
if len(sys.argv) != 3:
print("usage: single-ping.py $mux $dst")
sys.exit(-1)

ctrl = ScamperCtrl(mux=sys.argv([1])
ctrl.add _vps(ctrl.vps()[0])

ning = ctrl.do_ping(sys.argv[2], sync=True) «———

Connect to one
scamper instance.

Issue ping

synchronously

1f ping.min_rtt 1s not None:

print(f"{ping.inst.name} {(ping.min_rtt.total_seconds()*1000):.1f} ms")
glise:

print(f"no responses for {sys.argv[2]}")

23



Asynchron

if len(sys.argv) != 3:
print("usage: shortes
sys.exit(-1)

ctrl = ScamperCtrl(mux=sy
ctrl.add_vps(ctrl.vps())

ous Blocking: Shortest Ping

t-ping.py $mux $ip"')

Connect to all scamper instances.
s.argv[1l])

24



Asynchronous Blocking: Shortest Ping

if len(sys.argv) != 3:
print("usage: shortest-ping.py $mux $ip")
sys.exit(-1)

Connect to all scamper instances.
ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()) Issue pings on all VPs,
| S

ctrl.do_ping(sys.argv[2], inst=ctrl.instances()) i
which run async

25



Asynchronous Blocking: Shortest Ping

if len(sys.argv) != 3:
print("usage: shortest-ping.py $mux $ip")
sys.exit(-1)

Connect to all scamper instances.
ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()) Issue pings on all VPs,
| S

ctrl.do_ping(sys.argv[2], inst=ctrl.instances()) i
which run async

Asynchronous: issue Use in small/mid-scale,
multiple measurements, multi-VP reactive
stop to collect results. measurements.

E.g. Geolocating single IP address,
measuring RTT of authoritative

hameservers for a zone
26



Asynchronous Blocking: Shortest Ping

if len(sys.argv) != 3:
print("usage: shortest-ping.py $mux $ip"')
sys.exit(-1)

Connect to all scamper instances.
ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()) :
ctrl.do_ping(sys.argv[2], inst=ctrl.instances()) +«—— ISSl,le pings on all VPs,
which run async

min_rtt = None Block for responses, up to 10s
min_vp = None g P £ i
for o in ctrl.responses(timeout=timedelta(seconds=10)):
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Asynchronous Blocking: Shortest Ping

if len(sys.argv) != 3:
print("usage: shortest-ping.py $mux $ip"')
sys.exit(-1)

Connect to all scamper instances.
ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add_vps(ctrl.vps()) Issue pings on all VPs,
| S

ctrl.do_ping(sys.argv[2], inst=ctrl.instances()) :
which run async

min_rtt = None
— __—— Block for responses, up to 10s

min_vp = None
for o in ctrl.responses(timeout=timedelta(seconds=10)):

if o.min rtt is not None and (min rtt is None or min rtt > o.min rtt):

min_rtt = o.min_rtt ] , Sel

min_vp = o.inst +———— Determine VP with minimum RTT

1T min_rtt 1s not None:
print(f"{min_vp.name} {(min_rtt.total seconds()*1000):.1f} ms")

else:
print(f"no responses for {sys.argv([2]}") 28



Mixture of Blocking: Nameserver Delay

if len(sys.argv) != 3:
print("usage: authns-delay.py $mux $zone'") Sync.hronous
sys.exit(-1) Blocking query
to get NSes
ctrl = ScamperCtrl(mux=sys.argv|[1l])
ctrl.add _vps(ctrl.vps()[0]) l
# get the list of NS for the zone

o = ctrl.do_dns(sys.argv|[2], qtype='NS', wait_timeout=1, sync=True)

29



Mixture of Blocking: Nameserver Delay

if len(sys.argv) != 3:
print("usage: authns-delay.py $mux $zone") Sync.hronous
sys.exit(-1) Blocking query
to get NSes
ctrl = ScamperCtrl(mux=sys.argv[1])
ctrl.add _vps(ctrl.vps()[0]) l
# get the list of NS for the zone

o = ctrl.do_dns(sys.argv[2], qtype='NS', wait timeout=1l, sync=True)

# 1ssue queries for the IP addresses of the authoritative servers
for ns in set(o.ans_nses()):
ctrl.do_dns(ns, gtype='A', wait_timeout=1)

ctrl.do_dns(ns, qtype='AAAA', wait_timeout=1)
Asynchronous

Queries for
NS IPs 30



Mixture of Blocking: Nameserver Delay

# collect the unique addresses . .
addr = {} Build dict
for o in ctrl.responses(timeout=10): mapping IP

for a in o.ans addrs():

addr[al = o.gname to NS name

31



Mixture of Blocking: Nameserver Delay

# collect the unique addresses

addr = {} Build dict

for o in ctrl.responses(timeout=10): mapping IP
for a in o.ans addrs(): NS

addr[al = o.gname to Naime

# collect RTTs for the unique IP addresses

for a 1n addr:
ctrl.do_ping(a) Conduct async

rtts = {} | pings to all IPs,
for o in ctrl.responses(timeout=10): collact raciis

rttslo.dst] = o.min_rtt

32



Mixture of Blocking: Nameserver Delay

# collect the unique addresses

addr = {} Build dict

for o in ctrl.responses(timeout=10): mapping IP
for a in o.ans addrs(): NS

addr[al = o.gname to Naime

# collect RTTs for the unique IP addresses

for a 1n addr:
ctrl.do_ping(a) Conduct async

rtts = {} | pings to all IPs,
for o in ctrl.responses(timeout=10): collact raciis

rttslo.dst] = o.min_rtt

# print authns by delay Print NS
for a in dict(sorted(rtts.items(), key=cmp_to_key(rttcmp))):
print(f"{addr[al} {a} " + sorted by
(f"{(rttsl[a].total seconds() *x 1000):.1f}" RTT
if rtts[a] is not None else "??7?")) 33



Documentation

scamper python module documentation » Introduction

Table of Contents

Introduction
= Interacting with Scamper
Processes

Simple Parallel
Measurement:
Shortest Ping
Reactive
Measurement: RTTs
to Authoritative
Nameservers
Dynamic Event-
driven Measurement

= Reading and Writing Files
API Reference
= Classes for Managing
Scamper

ScamperCtrl
ScamperlInst
ScamperVp

ScamperTask

ScamperInstError

scamper — interact with scamper

Introduction

scamper is a tool that actively pro
topology and performance. The s
scamper module provides conven
scamper processes and data. The
classes for interacting with runnin
and related classes) and classes
ed with scamper (ScamperFile).
that store measurement results. T
scamper module include ping, tra
UDP probes, and packet capture.

Interacting with Scam

It iIs nossible to interact with local

scampe

r/python/

-nvironment I1s thoroughly documented at
nttps://www.caida.org/catalog/software/

* We provided the documentation to LLMs

- asked the LLM to write measurement
scripts.

- they ¢

@l d SIS GIR

often

need twea

able job, but scripts
<INg.

34


https://www.caida.org/catalog/software/scamper/python/
https://www.caida.org/catalog/software/scamper/python/

Summary

- We bullt an integrated active measurement program

environment, where we provide a programming env

ming
ronment that

exposes measurement capabllities on distributed vantage points

* We recently held a successful hackathon the weekend before AIMS
2025 where participants built scripts to collect and analyze data

across different topics (topology, DNS, web)

* We Invite researchers to use our platform. ark-info@caida.org

https://www.caida.org/catalog/software/scamper/python/

35
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Domain Specific Language: Pros + Cons

M High-level abstractions for common
measurements that have multiple
complicated steps

M Easier for non-programmers

™ Implementation of primitive is probably
petter than a roll-your-own

M Harder to do bad things; send bad

packets, too many packets, write to local
disk, consume CPU

M Can describe capabilities to VP hosts



Domain Specific Language: Pros + Cons

M High-level abstractions for common
measurements that have multiple
complicated steps

M Easier for non-programmers

™ Implementation of primitive is probably
petter than a roll-your-own

M Harder to do bad things; send bad

packets, too many packets, write to local
disk, consume CPU

M Can describe capabilities to VP hosts

[] DSL still needs to be learned

[] Base language (Python, Lua, Perl, Ruby)
might not be well-known

] Limited scope / cut down; might make

[] Researchers re
exposing usefu

[J Researchers reliant on
<eeping It up to date -
modern systems, moc

it difficult to do some types of tasks

ant on DSL maintainers

primitives anc

logic

DSL malRiEEes
‘0 Work on
ern protocols
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Approaches to managing measurements

Approach

Synchronous
Blocking

Summary

measurement must
complete before
script continues

When to use

Small-scale,
single-VE simple
measurements

S

ngle
ookl

Examples

bINgs, traceroutes, DNS

ps, H I TP queries, etc.
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Approaches to managing measurements

Approach Summary When to use
S measurement must Small-scale,
ynchronous | |
Blockin complete before single-VE simple
& script continues measurements
Asynchronous ssue multiple Srall/Mid-scale,
Blocking measurements, stop  multi-VP react

S

ve measuring RI [ o
(default) to collect results measurement

Examples

Single pings, traceroutes,

ookups, H T [P queries,

DNS
e,

Geolocating single |IP address,

- authorrtative

nameservers for a zone
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Approaches to managing measurements

Approach Summary When to use Examples
l-scal | |
Synchronous B | e S Single pings, traceroutes, DNS
Blocki complete before single-VE simple ookuns HITTP ateric:
FNTS script continues measurements P> y e
Asynchronous issue multiple Small/Mid-scale, (Geolocating single IP address,
Blocking measurements, stop  multi-VP reactive measuring RT T of authoritative
(default) to collect results measurements nameservers for a zone
A event-driven streaming Geolocating millions of P
synchronous Internet-scale 5 |
Non-Blocki of measurements, SRR addresses, Internet-scale Alias
OIS reacting to results resolution, Trufflehunter
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