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Abstract—We propose an agent-based model for the evolution
of the Internet ecosystem. We model networks in the Internet
as selfish agents, each of which tries to maximize a certain
utility function in a distributed manner. We consider a utility
function that represents the monetary profit of a network.
Our model accounts for various important constraints such as
geography, multihoming, and various strategies for provider and
peer selection by different types of networks. We implement this
model in a simulator, which is then used to solve the model and
determine a “steady-state” of the network. We then present a set
of “what-if” questions that can be answered using the proposed
model and by studying the properties of the resulting steady-
state.

I. INTRODUCTION

The Internet, at the interdomain level resembles in several
ways a natural ecosystem. Autonomous networks engage in
competitive transit (or customer-provider) relations, and also
in symbiotic peering relations. These relations, which are
represented as interdomain logical links, transfer not only
traffic but also economic value between networks. The Internet
ecosystem is dynamic, as networks continually attempt to
maximize, in a distributed manner, their utility obtained from
connecting to the Internet. The dynamics of the Internet
ecosystem are determined both by external “environmental”
factors (such as the state of the global economy or the popu-
larity of new Internet applications) and by complex incentives
and objectives of each network. Specifically, networks attempt
to optimize their utility or financial gains by dynamically
changing, directly or indirectly, the networks they interact
with. In recent times, there has been a great deal of interest
in understanding the evolution of the Internet ecosystem.
Recent trends such as the rise of major content providers, the
increasing amount of peer-to-peer traffic, and the changing
peering landscape raise important questions about where the
Internet is heading, in terms of topological and economic
organization. This paper presents an approach that can be used
to answer some of these questions about the evolution of the
Internet.

We propose an agent-based, dynamic model for the evo-
lution of the Internet ecosystem. The model considers the
Internet at the interdomain level as a network of interacting,
selfish agents, each of which is concerned with optimizing
its utility function in a distributed manner. An agent has
only local knowledge, and can change only its interactions
with its neighbors by creating or removing links to them.
We propose a first-principles model for these local actions

of networks, taking into account the various objectives and
constraints faced by networks. Our model relies on the concept
of profit as the utility function that networks attempt to
maximize, and takes into account practical considerations such
as geography, multihoming, transit, peering and operational
costs, and various provider and peer selection strategies often
followed by networks. As this model is analytically intractable
to solve, we rely on simulations and simply allow the model
to “run”. This results in an equilibrium or steady-state where
no network has the incentive to make a further change in its
connectivity.

Our model is not intended to be a topology generator, i.e.,
our goal is not to produce a topology that matches structural
properties of the Internet topology such as degree distributions.
Instead, the focus of our study is to be able to answer “what-
if” questions about possible evolution paths for the Internet
ecosystem. For example, one could ask questions of the form:
What is the best strategy for provider and peer selection for
transit providers when the interdomain traffic matrix consists
of mostly client-server traffic? What are the properties of the
steady-state when each network usess its optimal strategy?
What if the interdomain traffic matrix changes such that most
of the traffic is peer-to-peer traffic? How does multihoming
affect the economics of the Internet ecosystem?

The scope of possible “what-if” questions we can answer
with the proposed model is quite broad. In this paper, we focus
on describing the model, and present a canonical model which
we believe represents the current state of the Internet. We then
present a number of specific questions that we plan to answer
in future work. First, we plan to study various topological
and economic properties of the steady-state networks that
result from the canonical model, when networks use different
strategies for provider and peer selection. Then, we plan to
find the optimal provider and peer selection strategies for each
network. Finally, we plan to study the effect of external factors
such as the interdomain traffic matrix and the underlying cost
structures for transit, peering and local costs.

II. THE INTERNET ECOSYSTEM

We model the Internet ecosystem at the granularity of
autonomous networks. Each network is independently oper-
ated and managed and is inherently selfish, as it tries to
optimize its utility obtained from connecting to the Internet.
Networks can have different utility functions depending on
their requirements and business interests in connecting to
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the Internet. Further, each network in the Internet operates
under the condition of limited knowledge, meaning that it
has limited ability to predict the actions of other networks,
or to evaluate the long-term effects of its own actions. The
focus of this paper is mainly on the networks at the core
of the Internet, that are in the business of providing Internet
transit. These provider networks are mainly concerned with
maximizing their financial utility, or fitness. Providers try to
achieve this goal by changing the set of networks they interact
with, by intelligently choosing their own providers and peers,
and attracting customers.

As a result of this optimization performed in a distributed
manner by each network, the Internet topology continuously
evolves. In an attempt maximize their fitness, networks create
and drop links with other networks. The change in the topol-
ogy affects the flow of traffic in the system. The interdomain
traffic flow is a crucial factor affecting the evolution of the
Internet. The fitness of a network is determined by the traffic
it receives from its customers (for which it gets paid), the
traffic it sends to its providers (which it pays for), and the
traffic it sends to its peers (which results in transit costs saved).
Consequently, a change in the topology and traffic flow can
cause a change in the fitness function of a network. This
change in the fitness of a network could create an incentive
for that network to change its set of providers or peers, which
again changes the topology. We thus have a feedback loop in
which topology changes cause changes in fitness, which lead
to more topology changes.

This effect is illustrated in Figure 1. The topology in
combination with the interdomain traffic matrix and routing
policies determine the traffic flow in the network. The traffic
flow, together with external conditions such as pricing schemes
and operational costs determine the fitness of each network.
Networks attempt to optimize their fitness by changing their
connectivity, which results in topology changes. Networks
could differ in terms of the factors that affect their fitness, and
the types of actions those networks take in order to optimize
their fitness. In the next section, we describe in detail each
component of this model: The different types of networks,
the traffic model, the routing model, the economic model, the

role of geography, and different possible provider and peer
selection strategies.

III. A MODEL FOR AS INTERACTIONS

In this section we describe the key components of the model
that we develop for the Internet ecosystem. interactions among
networks in the Internet ecosystem.

A. Network types
We consider the following types of networks:
Enterprise Customers (EC): These are networks at the

“edge” of the Internet. Such networks are normally sources of
traffic, such as websites and hosting companies, or sinks, such
as campus/corporate/residential access networks. A fraction
s of ECs are mostly content sinks, while the remaining are
mostly content sources. We do not model the economic fitness
of ECs. The actions of ECs are limited to choosing the desired
set of upstream providers. In our model, ECs do not engage
in peering relationships.

Content providers(CP): CPs are networks that are mostly
sources of traffic. These are, however, distinct from content
ECs in that they also engage in peering relationships. Recent
studies [1], [2] show that content providers are increasingly
active in forming peering links. Google, Akamai and MSN
are examples of CPs.

Small Transit Providers (STP): Transit providers are
networks whose main business function is to provide transit to
other networks. STPs are providers that have limited geograph-
ical presence, often just a small set of geographical regions. In
our model, STPs do not themselves source or sink any traffic.
STPs are motivated by economic benefit, and choose their set
of providers and peers in such a way as to maximize their profit
(fitness). France Telecom, Rogers Telecom, and Chinacom are
examples of STPs.

Large Transit Providers (LTP): LTPs are similar to STPs
in the sense that their business function is to provide Inter-
net transit to other networks. LTPs, however, have a larger
geographical presence, often spanning the entire world. LTPs,
too are motivated by economic benefit, and choose their own
providers and peers in such a way as to maximize their profit.
LTPs are like “tier-1” networks, but in our model, an LTP may
have providers if necessary for reachability. Sprint, AT&T and
Level 3 Communications are examples of LTPs.

We refer to each network in our model as Autonomous
Systems (ASes), in the sense that each of them independently
chooses its set of providers/peers, and has complete control of
its internal network. This does not refer to ASes in the BGP
sense, because it also captures the presence of networks that
do not have AS numbers.

B. Traffic model
The traffic model concerns the generation of the inter-AS

traffic matrix that determines the amount of traffic sent from
each AS to every other AS. In order to generate this traffic
matrix, we assume that each AS i consumes an amount of



traffic Ii. We consider two different types of traffic: Client-
Server (CS) traffic and Peer-to-Peer (P2P) traffic. CS traffic
flows from content sources (source ECs and content providers)
to sink ECs, while P2P traffic flows between sink ECs. A pop-
ularity pc,i is associated with each content source i (source EC
or CP), which determines the popularity of the traffic generated
by that source. Similarly, a popularity pp,i is associated with
each sink EC i, which determines the popularity of the p2p
traffic generated by that sink EC. The incoming traffic for each
AS can now be split among different sources according to the
particular traffic model being used. By changing the relative
fraction of CS and p2p traffic, we can model various inter-AS
traffic scenarios. A parameter c determines the fraction of the
total incoming traffic at a network that is CS traffic, meaning
that the sources of this traffic are source ECs and CPs. Let Sc

be the set of sources of this traffic and nc be the number of
these sources. The sources are ranked in decreasing order of
the client-server popularity metric pc,j . For each access stub
i, we then assign the incoming CS traffic from each content
source j using a Zipf distribution as follows:

T CS
ji = c

1

jα

∑

k=1...nc

1

kα

Ii

Next, we assign the incoming P2P traffic for each network i

as follows. We construct the set of sources of p2p traffic for
i. This set Sp of size np is simply the set of all sink ECs.
These access stubs are ranked in decreasing order of the p2p
popularity metric pp,i. For each access stub i, we then assign
the incoming P2P traffic from other access stubs using a Zipf
distribution as follows:

T P2P
ji = (1 − c)

1

jα

∑

k=1...np

1

kα

Ii

The parameter α for the Zipf distribution controls the distribu-
tion of traffic from different sources to a particular destination.
The skewness of this distribution can be controlled by varying
this parameter. An important feature of the traffic matrix is that
the CS popularity and P2P traffic popularity of a source is the
same for all sinks. This reflects the fact that certain popular
websites are the largest sources of traffic for most destination
networks in the Internet. We assume that the same popularity
characteristics also apply to sources of P2P traffic.

To control the overall nature of the traffic matrix, we vary
the parameter c. c=1 means that the traffic matrix is completely
CS in nature. c=0 means that the traffic matrix is completely
P2P in nature.

C. Routing model
We capture the key properties of interdomain routing. In

general, Internet routing follows the policy of “no-valley,
prefer customers”. The no-valley policy implies that traffic
that enters a network i from one provider cannot exit through
a provider of i. Also, traffic that enters network i from a peer

cannot exit through another peer. For a network i, the rules
for selecting the next hop network towards each destination j

can be summarized as follows: i first prefers the customer that
advertises the shortest path to reach j. If j cannot be reached
through a customer link, then i chooses the peer that advertises
the shortest path to j. If there are no customers or peers that
can reach j, then i chooses the provider that advertises the
shortest path to j. In each of the previous cases, if multiple
neighbors of i advertise equal-cost paths to j, then i breaks
ties deterministically using the neighbor’s node id.

Calculating policy-compliant shortest paths between all
pairs of nodes can be computationally very expensive (O(N 3),
where N is the number of nodes in the graph). We optimize the
computation of routing tables by using an algorithm inspired
by the method proposed by Gao and Wang [3]. We simplify
the routing computation by assuming that stub nodes do not
form peering links. We can then calculate the shortest policy-
compliant paths among providers. This can be done efficiently
in O(NpEp), where Np is the number of providers and Ep

is the number of edges among providers. Following this step,
each provider p learns the best path towards each stub s via
the provider p′ of s for which p has the shortest path. This
can be done in O(NpNsdp,s), where dp,s is the multihoming
degree of stubs, and Ns is the number of stubs. Finally, each
stub s determines the best path towards stub s′. To do this, s

chooses the provider p among its set of providers that gives
the shortest path towards s′. The final step can be done in
O(N2

s ds).

D. Economic model
Given the interdomain traffic matrix, the interdomain topol-

ogy and the routing model, we can calculate the traffic flow
in the network. The traffic flow determines the aggregate
amount of traffic that flows over each link in the network.
The economic fitness of each transit provider in the network
is a function of this traffic flow.

For a transit provider, income is in the form of payments by
its transit customers. The provider also pays transit costs to its
own providers, peering costs, and also pays to maintain and
operate its own network (money spent on leasing/purchasing
infrastructure, staff salaries, etc.). We formulate an expression
for the fitness of a network i as follows. Let Ci be the set of
customers, Pi be the set of providers and Ri be the set of
peers of a transit provider i. Its “fitness” is:

fi =
∑

c∈Ci

Ti(vic) −
∑

p∈Pi

Tp(vip) −
∑

r∈Ri

Ri(vir) − Li(vi)

The function Ti(vic) determines the transit payment made
by customer c to i when the aggregate traffic exchanged by
the two networks is vic. The function Tp(vip) determines the
transit payment made by i to provider p when the aggregate
traffic exchanged by the two is vip. In practice, transit prices
show economies of scale, meaning that the per-bit cost of
purchasing Internet transit decreases as the volume of traffic
increases. We model this phenomenon by using a concave
increasing function to represent the cost of Internet transit as a



function of the traffic volume. We use the following function to
determine the transit payment made by network i to provider
p.

Tp(vip) = mt,p ∗ vet

ip (1)

The function Ri(vir) determines the monetary cost of main-
taining the peering link between i and r when the aggregate
traffic exchanged over the peering link is vir. These costs are
not paid by the peers to each other; rather, they are incurred
to purchase/lease a sufficiently high-bandwidth link to the
peering location. These costs are traffic dependent, and also
show economies of scale. We use the following function to
determine peering costs:

Ri(vir) = mr,i ∗ ver

ir (2)

The function Li(vi) determines the monetary cost of main-
taining the local network for network i when the aggregate
traffic handled by i is vi. We use a local cost function of the
form:

Li(vi) = li + ml,i ∗ vel

i (3)

The term li represents the traffic-independent costs, while the
other term represents the traffic-dependent costs incurred by i

for operating its local network.
The transit, peering and local cost exponents (et, er and el)

control the extent of the economies of scale associated with the
various costs. A lower value of the exponent results in larger
economies of scale, i.e., the per-bit cost of transit decreases
faster as the total volume of traffic increases. All providers
are assigned the same exponents for their transit, peering and
local cost functions, but differ in the multipliers mt,i, mp,i and
ml,i. This is consistent with data collected by Norton [4] and
Chang [5].

E. Geographical presence
Our model captures geographical constraints by assigning

a geographical presence to each network. It is important
to account for geographical presence in a model model of
interdomain interactions, because it constrains both provider
and peer selection for networks. A network can only choose
a provider with which it has at least one region in common.
We model geography by dividing the world into a number
of regions. Each network is then assigned a geographical
presence in a subset of those regions. Similarly, a network can
only peer with a network with which it has at least one region
in common. Networks of different types have significantly
different geographical presence. In particular, STPs are present
in a small number of regions, while LTPs typically have a
presence in most of the world.

F. Provider selection methods
Here, we describe the process and methods used by a

network i to choose its set of upstream providers. Network
i first determines its set of potential providers. Potential
providers of i have at least one region in common with i and
are not in the customer tree of i or of any peers of i. Let the set
of potential providers of i be Fi. Network i must now choose

its final set of providers from the set Fi. Networks of different
types can have different objectives in choosing providers. We
consider the provider selection goals that are reasonable for
different types of networks. For example, it is likely that many
edge networks are concerned simply with minimizing the price
they pay for Internet transit. Transit providers, on the other
hand, may avoid choosing their competitors as providers. We
consider three methods of provider selection that capture such
expected behavior by edge networks and transit providers.

Price-based (PR): In this method, the goal of network i

is to simply choose the cheapest providers. The metric used
for comparing providers is the transit price multiplier mt,j

associated with provider j.
Price-based Selective (SEL): This method is applicable

only to transit providers. For a provider that is concerned with
maximizing its profit, it makes sense to select the cheapest
providers. A provider i, however, would not want to choose
as provider a network that it could peer with in the future.
Provider i would also avoid a provider that it views as a
competitor, i.e., a provider that competes for the same set
of customers as i. We consider a provider selection strategy
where an STP does not choose other STPs in the same region
as providers. By using this strategy, a provider i simply
removes all STPs from the set Fi. As in PR provider selection,
the metric used for comparing providers is the transit price
multiplier mt,j associated with provider j.

Performance-based (PF): We consider a method of
provider selection whereby edge networks (ECs and CPs)
choose providers in a “performance-aware” manner. The recent
popularity of performance-sensitive streaming video and peer-
to-peer applications means that the sources and sinks of this
content have an incentive to connect to the providers that can
offer the best performance (e.g., in terms of short paths) to the
sources/destinations of this content. In this method, network i

needs to have an estimate of the traffic sent to and received
from each of its destinations. i estimates a performance metric
for each of its potential providers. The metric is the path length
to the major sources and destinations of traffic, weighted by
the traffic volume to those destinations. For each destination j

of i, let Aij be the total traffic sent and received by i to/from
j. Let lkj be the path length from provider k to destination
j. Now, the performance metric associated with provider k is
given by Lk =

∑
j Aij lkj .

G. Multihoming
Multihoming refers to the connection of a network to

multiple upstream providers. Networks that focus on reliability
and availability have used multihoming for several years.
Multihoming is increasingly popular recently, particularly by
transit providers in the core of the network [2]. In our model,
each network i is assigned a maximum multihoming degree
dp,i. A network may impose a maximum multihoming con-
straint due to practical or economic considerations. In practice,
it may not be possible for network i to always connect to dp,i

providers. This could be the case if i cannot find dp,i providers
in its set of potential providers.



For each of the provider selection methods mentioned in
Section III-F, lower values of the performance metric are bet-
ter. Network i ranks its set of potential providers in increasing
order of their performance metric. It then chooses the top dp,i

providers according to this ranking. Each network i can have
a different multihoming degree dp,i. Multihoming degrees for
networks are drawn from a range, depending on the type of
network.

H. Peer selection methods
Here, we describe the process and methods adopted by

a network i to choose its set of peers. For a network, the
objective for peering is to save transit costs, and in some cases
to maintain reachability to the rest of the network. We consider
three different methods for peer selection by networks, based
on what commonly happens in the Internet.

Peering by necessity (NC): In this mode, a network i only
peers with j if that is necessary to maintain reachability. In
some cases, it is not possible for i and j to reach consensus
on which of the two should be the provider of the other. This
happens in the case where both i and j would choose the other
as their provider according to their own provider selection
criterion. In this case, i and j form a peering link “due to
necessity”.

Peering by traffic ratios (TR): A common approach
used by ISPs to make peering decisions relies on traffic
exchange ratios. In this method, two ISPs i and j peer if they
exchange “roughly equal” volumes of traffic. In practice, this
is implemented by measuring the ratio of the traffic that flows
from i to j and from j to i. If this ratio is less than rt, then
i and j agree to peer.

Peering by cost-benefit analysis (CB): In this method
for peering, a network i assesses both the costs associated
with a specific peering link, and the potential benefits that
can be achieved by that peering. The costs associated with
peering are due to the fixed and traffic dependent costs of
establishing a peering link. The potential benefits are due to
saved transit fees. Network i chooses to peer with j if the
estimated benefits are greater than the estimated costs. This
implies that the fitness of i after establishing the peering link
would be greater than the fitness before. In practice, a network
i needs to estimate the “peerable traffic volume” with network
j, which can be used to calculate the costs of peering. Network
i then subtracts the peerable traffic volume from the total traffic
sent to the transit provider of i, and calculates the estimated
transit payments that can be saved through peering.

I. Network actions
In our model, networks periodically reconsider their

provider and peer selection to connect to the optimal set of
providers and peers, i.e., to maximize their own fitness. A
detailed description of this process follows.

1) Provider selection: First, a network i identifies the set
of preferred providers, according to its provider selection
criteria. Let this set be Pi.

2) Try to peer with providers: If network i does not form
peering links, skip to step 3. Else, i tries to convert each
of its provider links to peering links. For this purpose,
we evaluate the provider selection criteria of j, and find
the set Pj . If j ∈ Pi and i ∈ Pj , then i and j become
peers “due to necessity”. This condition captures the
situation where i and j cannot agree on who should
be the provider of whom. In this case, they need to
peer to maintain global reachability for their customers.
Network i then removes transit links to providers that
are also in the customer tree of j. The intuition for this
is as follows: When i and j form a peering link, some
providers from Pi may be in the customer tree of j. i will
never use such providers to reach nodes in the customer
tree of j, since the direct path through the peering link is
preferred. Figure 2 represents a case where i can safely
remove providers k and l after forming a peering link
with j. 1

i

k l

s1 s2 s3

j

Fig. 2. Network i can remove providers k and l after forming a peering link
with provider j.

3) Check for potential peering candidates: Analogous
to the set of potential providers, network i maintains
a list of possible peering candidates, Ri. As ECs do
not peer in our model, the set of peering candidates
of i is restricted to LTPs, STPs, and CPs that have a
geographical region in common with i. For each possible
peering candidate k, i performs the following actions:
If k is already a peer of i, then i checks whether the
peering link with k should be maintained. As this is i’s
turn to act, i unilaterally verifies whether the peering
requirements are satisfied. Network i also verifies if it
needs to peer with k due to necessity. If these peering
criteria are not satisfied, then i de-peers k and exits the
peering loop. If i and k are not peers, then i examines
whether it is possible to establish a new peering link
with k. This is a bilateral decision, and hence the
peering criteria of both i and k must be satisfied in
order for a peering link to be established. If the peering
link is formed, then i again executes the procedure for
removing providers that are in the customer tree of k (see
step 2. If the peering link is formed, i exits the peering

1A corner case can occur when i needs providers to reach networks that are
not in the customer tree of j, but all of i’s providers are also in the customer
tree of j. Rather than selecting arbitrarily which provider to keep, we impose
the condition that i keeps both k and l.



loop. Note that in one move, i may add or remove only
one peering link.

Note that all the actions performed by a network in each
move are completely deterministic. This is in sharp contrast
to previous evolutionary models of Internet topology (such
as those based on preferential attachment [6]). Those models
effectively generate a random graph that has certain structural
properties such as a desired degree distribution. Our model is
not intended to be a topology generator that matches certain
structural properties of the Internet topology. Instead, our
model attempts to explain the topology dynamics by modeling
the optimizations made by networks. These optimizations are
largely deterministic in nature, as each network attempts to
unilaterally maximize its fitness.

J. Canonical model (CN)
So far, we have described the key components of our

model in general terms, without mentioning any parameter
values. In this section, we describe a model, referred to as
the canonical model (CN), which we view as representative
of the real Internet. This is essentially a parameterization of
the model described previously, and it includes values for
the fraction of P2P traffic, transit, peering and local cost
parameters, multihoming degrees, geographical coverage and
provider and peer selection strategies employed by different
classes of networks.

Unless otherwise stated, in this paper, we work with a
network consisting of 180 ECs, 20 providers (4 LTPs and
16 STPs) and 10 CPs. (the scale issue is further discussed
in Section III-K). We assign 80% of ECs to be content sinks,
and 20% to be content sources (s = 0.8). Each content sink
i consumes an amount of traffic Ii, where Ii is drawn from a
Pareto distribution with mean 2000Mbps and shape parameter
1.1. This produces the effect where certain sinks are “heavy-
hitters” in terms of the amount of traffic consumed. In the
canonical model, the traffic matrix is neither completely client-
server, or completely P2P. Instead, the we set c = 0.8 to
represent a “predominantly CS” traffic matrix, where 80% of
the traffic consumed by a sink is CS traffic. The parameter α of
the Zipf distributions used for creating the interdomain traffic
matrix is chosen as 0.8. This produces a distribution in which
the traffic from different sources to a particular destination is
significantly skewed.

As far as possible, we parameterize the economic model
using real-world data. Chang et al. [5] report that the exponent
for the transit pricing functions of providers et is around 0.75,
while the peering cost exponent er is around 0.25. The transit
price multipliers mt,i of STPs are between 30 and 140, while
those of LTPs are between 80 and 150. These values are based
on data reported by Norton [4] in 2006. The peering cost
multipliers mr,i are between 300 and 400. In the absence of
data about local costs, the local cost exponent el is set to
0.5. The local cost multipliers are set differently for STPs and
LTPs. These are between 100 and 200 for STPs and between
300 and 400 for LTPs. The traffic independent costs for LTPs
are greater than those for STPs. This reflects the fact that LTPs

have larger networks (due to a larger geographical scope),
and hence need to spend more to maintain their network. The
local cost parameters are assigned so that the traffic-dependent
and traffic-independent local costs account for roughly equal
fractions of the total local costs incurred by a provider. The
transit, peering and local cost parameters are assigned in such
a way that for the same traffic volume, peering costs are the
lowest, followed by traffic-dependent local costs; transit costs
are the highest.

We construct the initial topology in such a way as to
match certain known properties of the Internet’s interdomain
topology. A recent study [2] measured the provider preference
of different classes of networks in the Internet, and found that
60% of the providers of ECs are STPs and 40% are LTPs. On
the other hand, approximately half of the providers of STPs
and CPs are STPs. In our initialization, LTPs are assumed to be
present in each geographical region, and are fully meshed by
peering links. This is similar to the well-known clique of Tier-1
providers in the Internet. STPs are deterministically connected
to other STPs and LTPs, in such a way that the number of
links between STPs and LTPs is approximately equal to that
between STPs and STPs. To connect ECs and CPs, we follow a
procedure that simulates preferential attachment. We add ECs
and CPs sequentially, choosing a provider (either STP or LTP
according to the provider preference of ECs and CPs) with a
probability that is proportional to the existing customer degree
of that provider.

In the canonical model, ECs use PR provider selection
and do not peer. CPs also use PR provider selection, but
peer selectively based on CB analysis. For STPs and LTPs,
we consider two possibilities of provider selection: PR and
SEL. We have three possible peer selection methods for STPs
and LTPs: NC, TR and CB. The combination of a provider
and a peer selection method defines a strategy for STPs and
LTps, which gives a total of 6 possible strategies for each
transit provider. We define a scenario as a specification of
the provider and peer selection strategies that STPs and LTPs
follow. In a scenario, we assume that all providers belonging
to the same class follow the same strategy. For example, the
notation

{CN, (SEL, TR), (SEL, NC)}

represents the scenario with the canonical model (CN), where
STPs use SEL provider selection and peer using TR, while
LTPs select providers using the SEL rule and peer based on
NC.

Tables I and II summarize the parameterization of our
canonical model.
K. Computing the steady-state network

Our objective is to determine what happens to the network,
in terms of topology, traffic flow, economics and performance,
when STPs and LTPs use different strategies for provider and
peer selection. For this purpose, it is necessary to “solve”
the model, computing the steady state-network given the
initialization and the strategy of each network. The steady-
state is a situation where no network has the incentive to



metric EC STP LTP CP
Number of networks 180 16 4 10
Number of regions 1 2 5 1

Max. multihoming degree (dp,i) 1 2 3 3
CS popularity (pc,i) [0,100] - - [0,100]
P2P popularity (pp,i) [0,100] - - [0,100]

Transit multiplier (mt,i) - [40,130] [80,150] -
Peering multiplier (mr,i) - [300,400] [300,400] -

Local cost multiplier (ml,i) - [100,200] [300,400] -
Traffic-independent local cost (li) - 5000 50000 -

Incoming traffic (Ii) [0,2000] - - -

TABLE II
CANONICAL MODEL PARAMETERIZATION: PER-NODE METRICS

global metric notation value
Fraction of client-server traffic c 0.8

Fraction of content stubs s 0.2
Source popularity parameter α 0.8

Total number of regions 5
Transit price exponent et 0.75
Peering cost exponent er 0.25
Local cost exponent el 0.5
Peering traffic ratio rt 2

TABLE I
CANONICAL MODEL PARAMETERIZATION: GLOBAL METRICS

unilaterally change its set of providers or peers. We solve
this model computationally, as it is too complex to solve
analytically. Solving the model involves iteratively allowing
a network to play (according to its pre-defined strategy in
each move), until we reach a stage where no network has the
incentive to unilaterally make changes to its connectivity. This
state, analogous to the concept of Nash Equilibrium in game
theoretic models, represents the “steady-state” of the network.
We assume that nodes play in a particular sequence, with a
randomly chosen starting node.

1) Pick the next network i in the playing sequence.
2) Complete the move of network i, as described in sec-

tion III-I
3) If the move of network i causes the topology to change,

recompute the routing tables, traffic flow and fitness
function of each network.

4) Check termination criteria. If each network has had a
chance to play and has not made any change to its
connectivity, then stop.

An important question is whether this model always reaches
steady-state. Several aspects of our model are explicitly de-
signed to avoid oscillations, e.g., the part of the model that
focuses on removing unnecessary providers, and the fact that
a provider adds or removes just a single peering link in each
move. In practice, we find that in most cases, the network
reaches a steady-state. In the cases where steady-state is
not reached, the oscillations are due to a small number of
networks, and even if the topology does not remain constant,
the traffic flow and fitness distribution is practically constant.
We plan to study the convergence properties of the model in

future work.
Another important issue is the uniqueness of the steady

state. We find that for a given initial topology and set of
strategies for networks, the order in which networks play
can affect the steady-state network. In some cases networks
happen to make the “right move at the right time”, such
as forming a particular peering link or choosing a certain
provider, causing different steady-state networks. The presence
of multiple steady-states is analogous to the concept of games
where the Nash equilibrium is not unique. To account for this
uncertainty, we run multiple simulations for a particular initial
topology and set of strategies by changing the order in which
networks play. We then study the expected value of the steady-
state properties. For example, the expected fitness for network
i is the fitness of network i at steady-state, averaged over a
number of permutations with different orders of play.

An important issue is the time complexity involved in
determining the steady-state using agent-based simulations.
Figure 3 shows the simulation time 2 for the scenario
{CN,(SEL,TR),(SEL,NC)} as the number of networks grows,
keeping the relative proportions of different network types
fixed. Clearly, the running time of the model scales super-
linearly with the number of networks. The main reasons for
this are the complexity of computing the interdomain traffic
flow, and the number of iterations to reach steady-state. Due
to the fact that the running time of the model scales super-
linearly with the number of networks, it is computationally
infeasible to run the model at a scale larger than a few hundred
networks, particularly as we need to run multiple simulations
to investigate a wide parameter space and different variations
of the canonical model.

L. How do we use this model?
We emphasize that the proposed model is not meant to be

an Internet topology generator. We do not aim to produce
a topology that matches structural properties of the actual
Internet. Instead, the applications of the model lie in the
ability to answer “what-if” questions. Here, we present specific
questions that we plan to investigate in future work. We believe

2These simulations were run on a machine with with a 3GHz Intel Xeon
processor and 2GB of memory.
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Fig. 3. Simulation time as a function of the number of networks.

that answers to these questions can give important insights into
the possible evolution paths of the Internet ecosystem.

1) First, we plan to examine the steady-state networks
that result from the canonical model. As described in
Section III-J, we focus on STPs and LTPs. For each
of these classes, we have 6 strategies of provider and
peer selection, giving us a total of 36 combinations for
these two classes. For each of these, we can examine
the output metrics described in Section III-N. It is then
possible to determine which combination of strategies
leads to “favorable” steady-states, in terms of economics
or performance.

2) We can determine the optimal strategy that each AS
should use in order to obtain the maximum expected
payoff at the steady-state. We can then investigate what
happens when each AS plays its optimal strategy.

3) Our model accounts for various external factors such as
the inter-AS traffic matrix, transit, peering and local cost
structures, and the provider and peer selection strategies
of ECs and CPs. We plan to examine the properties of
the steady-state networks for different values of these
factors. For example, what happens to the fitness of LTPs
when the amount of p2p traffic in the Internet increases?
Do LTPs make more or less money than if the traffic
matrix was mostly client-server in nature?

M. Relation to game theory
Game theoretic models have been successfully applied to

study other systems consisting of selfish, interacting agents.
Here, we discuss the similarities and differences of our model
with some popular game theoretic models. A large class of
game theoretic models called static games are relevant for
systems where agents make their moves simultaneously, and
the potential payoffs are known in advance. In reality, networks
do not make their decisions simultaneously, and may not
always know the future payoffs. Iterated games consist of a
number of repetitions of a base static game, and are also not
applicable here for the same reason. The closest game theoretic
model is a sequential game with incomplete and imperfect
information. Networks are selfish and act in such a way as
to optimize their own fitness. Networks play sequentially, and
can potentially see the effects of previous moves made by

other networks. Further, a network may not know about or
anticipate the effects of possible moves that other networks
make. A sequential game can be represented as an extensive-
form game tree. Nodes in the tree represent every possible
state of play for the game. The game begins at a unique
initial node, and progresses through the tree along a path
determined by the players actions until a terminal node is
reached, where the game ends and payoffs are assigned to all
players. At each non-terminal node, a player chooses among
the possible moves at that node, which is an edge leading from
that node to another node. Variations of the basic sequential
game involve incomplete information (a player does not know
the type of other players) or imperfect information (a player
does not know the state of the game when she plays) have
been studied in the literature. A key feature of each of these
models, however, is that payoffs obtained at each terminal
node in the tree are known. In this case it is possible to use
methods such as backwards induction to determine the optimal
move by a player at each stage of the game. In the case of the
Internet ecosystem, however, it is hard to determine the payoffs
that would be obtained from each combination of moves by
networks. These payoffs have to be determined numerically,
by simulating, for each network, every possible move at each
stage of the game. Given the number of networks and the
possible provider and peer selection options for each network,
it is infeasible to determine the payoffs in this manner. Instead,
we assign a particular provider and peer selection strategy to
each class of networks, and an network plays this strategy at
each stage of the game. It is then possible to determine the
payoffs obtained from each of these strategies by running the
model to completion.

N. Steady-state properties
Once we run the model as described previously, we char-

acterize the resulting steady-state network. Here, we are in-
terested not only in topological properties, such as degree
distributions, but also metrics that pertain to economics and
performance. We measure a set of output metrics that measure
the properties of the steady-state network.

Topological properties: Examples of such properties are
the degree distribution, the number of peering links, and
customer-provider links between different types of networks.
We measure the average path length between any two net-
works, which is an indicator of the global performance level.
This metric can also be weighted by the traffic exchanged by
those networks to get a weighted path length. We also measure
properties related to traffic flow, such as the fraction of the total
end-to-end traffic that flows over peering links.

Network-specific properties: Examples of such properties
are the fitness of individual networks, the number of providers
that have positive fitness at the steady-state (meaning that these
providers are profitable), the number of customers for each
provider, and the number of peering links established between
different classes of providers.

Economic properties: A metric such as the total fitness
of different classes of networks can be used to measure the



economic performance of different classes of networks. (e.g.,
are LTPs as a class profitable or not?). We also measure
metrics that relate to the level of competition in the Internet
Ecosystem, such as the number of profitable providers.

IV. RELATED WORK

A major research effort aimed to characterize the AS-
level topology during the last decade. One of the most well
cited papers, by Faloutsos et al. [7], argued that the Internet
AS-level topology is “scale-free”. The observation that the
degree distribution follows a power-law led to several topology
generation models that could produce such distributions. These
models focused on “growing” a topology that could match
the Internet topology with respect to certain measurable graph
metrics. The most well known work in this area is the
preferential attachment model of Barabasi et al. [6]. Several
variants and comparisons of preferential attachment models
were later proposed [8], [9], [10], [11], [12], [13], [14] The
models in this research thread have been mostly descriptive,
meaning that they attempt to reproduce certain known struc-
tural characteristics of the Internet. They do not, however,
attempt to explain how these properties emerge, or the domain
specific interpretation of the various tunable parameters in
those models.

The previous descriptive models received considerable crit-
icism (for instance, see [15], [16]) because they mostly focus
on the degree distribution and clustering, ignoring important
characteristics of the Internet topology such as hierarchy or
the presence of links of different types (transit versus peering).
Further, the previous models do not explain how the Internet
topology is evolving. This led to new models that view the In-
ternet topology as a side effect of optimization-driven activity
by individual ASes. These concepts were first introduced by
Carlson and Doyle in [17], and later applied in the context of
the Internet in [18] and elsewhere. Chang et al. [19] aimed to
model AS interconnection practices, considering the effects
of AS geography, AS business models and AS evolution.
Norton [1] discusses, mainly using anecdotal evidence, how
economic and competitive interests influence peering and
transit connectivity in the Internet. Economides [20] discusses
the economics of the Internet backbone (without looking at
topology dynamics).

The body of work closest in spirit to ours is that of Chang et
al. [5]. In that work, the authors focused on developing a model
for the provider and peer selection behavior of ASes, taking
into account the economics of transit and peering relationships
and practical constraints such as geography. The focus was
on “growing” a network using the local interactions between
ASes. In this work, we focus mainly on the rewiring of links
between existing ASes, and study the properties of the steady-
state that results from the local optimizations of each AS. Also
related is the work of Holme et al. [21], which developed an
agent-based simulation model where the agents are individual
ASes with economic incentives. In their model, each AS
attempts to connect in such a way as to maximize its utility
under a set of constraints. Their model captures the effects of

economics, geography, user population and traffic flow in AS
interconnection. They do not, however, model the presence of
different classes of ASes with different incentives and business
functions. Our model for network interactions accounts for
different AS classes, policies in inter-AS relationships, realistic
traffic flows and a detailed model for economic fitness of ASes.
Corbo et al. [22] propose an economically-principled model
that is able to create the observed structure of the AS graph.
Their model considers the economic utility of an AS, and
focuses on growing a network where each new AS tries to
maximize its utility from connecting to the Internet. The goal
of their work is mainly to derive, from first principles, a model
that reproduces certain characteristics of the AS graph.

A series of papers [23], [24], [25] advocate the use of the
Shapley value for revenue distribution between ISPs. They
show that if profits were shared according to the Shapley value,
the set of desirable “fair” properties inherent to the Shapley
solution exist, and the selfish behavior of ISPs leads to globally
optimal routing and interconnecting decisions.

A body of work known as “network formation games”
[26], [27], [28] takes a game theoretic approach towards
understanding the creation of bilateral contracts (interdomain
links) between autonomous networks. These papers formulate
a game where the nodes of the network (which can be
Autonomous Systems) form a graph to route traffic between
themselves. Variants of these models assign costs for routing
traffic, as well as for a lack of end-to-end connectivity. The
goal is for each node to create the set of links that maximizes
its utility. A key difference of these models with ours is that
they are static in nature; they model one-shot games where a
node is able to predict the effects of creating a particular link.
In contrast, we model the dynamics of network formation.
Further, we consider the more realistic case where ASes do
not play simultaneously, are able to observe the moves made
by other players, and also the effects of those moves. Also,
we assume that a network does not have the ability to predict
the long-term effects of its actions.
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