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1. INTRODUCTION
The Internet is composed of tens of thousands of Autonomous

Systems (ASes) which interconnect with one another through customer-
provider (transit) and settlement-free peering links. Their intercon-
nection objectives are a function of their business type e.g., transit
providers, content providers, enterprise customers etc. In order to
achieve these objectives the ASes adopt a set of criteria which are
used to assess potential and existing settlement-free peering rela-
tionships. These relationships are bilateral in nature, i.e., for two
ASes x and y to establish a peering relationship, they must satisfy
each other’s peering criteria. The set of criteria used by an AS for
assessing potential peering relationships is referred to as its peer-

ing policy. We commonly observe three peering policies publicized
by ASes in PeeringDB [1], an open portal where ASes voluntarily
share information about their peering policies, – Restrictive, Selec-

tive and Open. These peering policies are explained in section 2.
The peering strategy adoption by ASes of different categories

taken from a recent snapshot of PeeringDB showed that Open is the
dominant peering strategy among all AS categories, with more than
60% of ASes in each category using Open peering. The fact that
64% of NSPs (transit providers) use Open peering is especially sur-
prising since transit providers prefer other ASes as their customers
rather than peers. Why do transit providers tend to peer openly?

In our work [2] we use an agent-based computational model,
GENESIS, to study peering strategy adoption by transit providers.
Our computational model incorporates most of the real world con-
straints e.g., geographic co-location, skewed distribution of traffic,
economies of scale, multiple transit prices per AS etc. We em-
ployed computational modeling as incorporation of all these con-
straints in an analytical model quickly renders the model intractable.
In that work we find that peering decisions are interdependent and
myopic decisions and lack of coordination among ASes results in
Open peering as an attractor among peering strategies for transit
providers. Interestingly, we observe that this adoption of Open

peering results in loss of economic fitness for a majority of tran-
sit providers. Further, large scale adoption of Open peering results
in stable equilibria.

In this paper we use game theoretic analysis to gain further in-
sight into peering strategy adoption by transit providers in the In-
ternet. We employ a much simplified variant of GENESIS in our
current work to keep the analytical approach tractable. Our analyt-
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ical results corroborate our previous simulation based results. Our
results show that when transit providers have complete information
about co-located providers they can optimize their economic fitness
by adopting Selective peering strategy. Further, any uncertainty in
the system causes the providers to gravitate towards Open peering,
a suboptimal equilibrium.

2. MODEL DESCRIPTION
In this section, we briefly describe our network formation model.

A detailed description of GENESIS can be found in our previous
work [3, 4]. The nodes in the network can broadly be divided into
two classes – transit providers and stubs. Transit providers have at
least one transit customer whereas stubs have none. Stubs have a
passive role in the model. They do not change their assigned tran-
sit provider and openly peer with any node offering to peer with
them.Thus, they do not engage in strategic decision making. Tran-
sit providers engage in strategic decision making by choosing the
peering strategy that maximizes their economic fitness. We next
describe each component of the model in brief.
Co-location: Two nodes are “co-located” if they are present in at
least one common geographic location. Co-location is necessary to
establish any type of link between two nodes. The set Gm denotes
the set of ASes co-located with m.
Traffic components: The traffic sent from node m to n is given
by Vmn. The traffic exchanged between nodes m and n in both
directions is given by V ′

mn Thus,

V
′

mn = Vmn + Vnm

Note that V ′

mn = V ′

nm. Traffic is routed using the real world
Valley-free customer-prefer-then-peer routing policy.
Economic attributes: Each transit provider m charges a transit
price Pm $/Mbps from its customers. If node n exchanges traffic
V ′

Tn with the entire network through provider m then n makes a
transit payment TCn to its transit provider m which is given by:

TCn = Pm × V
′

Tn (1)

The sum of all transit payments from the customers of m con-
stitutes its transit revenue TRm. Our model captures public peer-
ing relationships such as those at Internet Exchange Points. Public
peering incurs a cost on its participants as well. If V ′

Pm is the total
peering traffic for node m then its peering cost is given by:

PCm = PP × V
′

Pm (2)

where PP $/Mpbs is the universal peering cost.
The economic fitness of a node m represents its net profit. In

our simplified model it is a function of the peering policy of m and



the peering policies of all co-located nodes. We denote the set of
possible strategies of node m by Sm, its peering policy with PSm

and its set of peers by PPm.

πm(PSm, PSn, ...) = TRm − TCm − PCm

∀ n ∈ Gm (3)

The objective of each node is to maximize its fitness by choosing
the best peering strategy.
Settlement-free peering: Nodes enter into settlement-free peering
relationships with one another based on their peering policies. In
this paper we consider the following three peering policies, based
on the dominant strategies published and widely discussed at Peer-
ingDB [1] and NANOG [5]:

1. Restrictive (R): A node that uses this policy does not peer
with any other node. However, the Tier-1 nodes while using
this policy peer among themselves to prevent loss of connec-
tivity in the Internet.

2. Selective (S): A node x that uses this strategy agrees to peer
with nodes of similar ”size”. We use total traffic volume as a
measure of similarity of the nodes.

3. Open (O): A node that uses this strategy agrees to peer with
any other colocated node except direct customers. All stubs
follow this policy only.

3. REFERENCE NETWORK AND PARAM

ETERS
We analyze a simple network shown in figure 1. The network

consists of three transit providers: x, y and T . We assume that T
is a tier-1 transit provider i.e., it does not require a transit provider.
Nodes x and y are its customers. We also assume that T neither
generates nor consumes any traffic. a and b are stubs and cus-
tomers of x and y respectively. We assume the following for the
co-location of nodes in the network: Gx = {T, y, a, b}; Gy =
{T, x, a, b}; Ga = {x, y}, Gb = {x, y}. Thus, there are two
players x and y in the model whose peering policies affect the net-
work. In the given network, the traffic exchanged between providers
and their direct customers i.e. V ′

xa and V ′

yb is not affected by the
peering policies of the providers. Therefore, we can ignore these
traffic quantities. We also assume that the total traffic volume of x
and y is such that a and b do not qualify to become their peers. The
total traffic exchanged between x and T i.e., V ′

Tx and y and T i.e.,
V ′

Ty for the given network is given as follows:

V
′

Tx = V
′

xy + V
′

xb + V
′

ab + V
′

ya (4)

V
′

Ty = V
′

xy + V
′

xb + V
′

ab + V
′

ya (5)

In the Internet, transit costs generally exceed peering costs for
the same volume of traffic. Thus, we assume that Pi > PP ∀i ∈
(x, y).

4. RESULTS

4.1 Static Game of Complete Information
In this section we assume that both players, x and y, play simul-

taneously and both are completely aware of each other’s strategies
and payoffs. Given that there are 2 players, each with 3 strategies,
there are 9 possible outcomes.

Figure 1: Reference Network

Since the peering policies of stubs a and b are fixed (Open) we ex-
press the fitness of the two providers x and y as a function of their
peering policies only. Let πx(PSx, PSy) and πy(PSx, PSy) de-
note the fitness of x and y respectively. Table 1 gives the peers of
each provider and Table 2 gives the payoffs for all strategy combi-
nations.

Analysis: An analysis of the payoffs reveals that πi(R) ≤
πi(A) ∀i ∈ (x, y),∀A ∈ (S,O,R) i.e., Restrictive peering
strategy is dominated by both Selective and Open strategies. Thus,
there is no incentive for the providers not to engage in settlement
free peering with other nodes.

Additionally, the game has two Nash equilibria: (S, S) and (O,O).
Of the two equilibria, (S, S) stands out as the compelling solution
to the game since πi(S, S) > πi(O,O)∀i ∈ (x, y). Thus, (S, S)
is the payoff dominant equilibrium while (O,O) is the risk dom-
inant equilibrium. Why is (S, S) payoff dominant? In order to
optimize their economic fitness both providers would like to re-
tain their transit revenues while reducing their transit and peering
costs. For the strategy pair (S, S) there is no loss in transit revenue
of either provider and both providers are able to put all their tran-
sit traffic on peering links, thus significantly reducing their costs.
For the strategy pair (O,O), both providers are able to put all
their transit traffic on peering links similar to the (S, S) configu-
ration. However, under the (O,O) configuration some fraction of
customer traffic bypasses the providers and is exchanged directly
between their customers and peers. For example, under (O,O)
traffic a → b bypasses x resulting in loss of revenue. Similarly,
traffic b → a bypasses y. While stubs benefit from this configura-
tion, the providers have to suffer a loss in revenue. Why is (O,O)
an equilibrium even though an optimal strategy pair exists? Sup-
pose x uses Open strategy while y uses Selective. x establishes a
peering link with b which causes traffic a → b and b → a to flow
over the peering link x − b. Thus, y’s transit traffic goes to zero
resulting in a complete loss of revenue. If however, y also adopts
Open strategy it establishes a peering link with a. This partially al-
leviates y’s loss, as traffic a → b now passes through it. Thus, any
unilateral deviation from Open strategy under (O,O) will result
in complete loss of revenue for the deviating provider. No rational
provider will attempt to do so.

The (S, S) strategy pair is payoff dominant and hence the ratio-
nal choice for both players. However, an underlying assumption
for a provider x to choose S over O is the condition that it has suf-
ficient traffic volume to qualify to be y’s peer if PS(y) = S (we
refer the reader to our previous work [3] for detailed discussion of
Selective peering strategy). If x does not qualify to be the peer of
y under PS(y) = S then x would choose O. If PS(x) = O

then the rational choice for y is also to choose O. Hence the Nash
equilibrium (O,O).



Player x

R S O

R PPx = ∅ PPy = ∅ PPx = ∅ PPy = ∅ PPx = {b} PPy = ∅
Player y S PPx = ∅ PPy = ∅ PPx = {y} PPy = {x} PPx = {y, b} PPy = {x}

O PPx = ∅ PPy = {a} PPx = {y} PPy = {x, a} PPx = {y, b} PPy = {x, a}

Table 1: Peers of providers under Static Game of Complete Information

Player x

R S O
R πx = Px × (V ′

ya + V ′

ab
) − PT × V ′

Tx

πy = Py × (V ′

xb
+ V ′

ab
)− PT × V ′

Ty

πx = Px × (V ′
ya + V ′

ab
)− PT × V ′

Tx

πy = Py × (V ′

xb
+ V ′

ab
) − PT × V ′

Ty

πx = Px × (V ′
ya + V ′

ab
)− PT × (V ′

xy +

V ′
ya)− PP × (V ′

xb
+ V ′

ab
)

πy = −PT × (V ′
xy + V ′

ya)
Player y S πx = Px × (V ′

ya + V ′

ab
) − PT × V ′

Tx

πy = Py × (V ′

xb
+ V ′

ab
)− PT × V ′

Ty

πx = Px × (V ′
ya + V ′

ab
)− PP × V ′

Tx

πy = Py × (V ′

xb
+ V ′

ab
) − PP × V ′

Ty

πx = Px × (V ′
ya + V ′

ab
)− PP × V ′

Tx

πy = −PP × (V ′
xy + V ′

ya)

O πx = −PT × (V ′
xy + V ′

xb
)

πy = Py × (V ′

xb
+ V ′

ab
) − PT × (V ′

xy +

V ′

xb
)− PP × (V ′

ya + V ′

ab
)

πx = −PP × (V ′
xy + V ′

xb
)

πy = Py × (V ′

xb
+ V ′

ab
) − PP × V ′

Ty

πx = Px×Vba−PP ×(V ′
yx+V ′

xb
+Vba)

πy = Py×Vab−PP ×(V ′
xy+V ′

ya+Vab)

Table 2: Payoffs Static Game of Complete Information

4.2 Dynamic Game of Complete Information
Our model of the static game can be extended to a dynamic game

as well. Using the same network as shown in figure 1, we analyze
a two stage game of complete information. In the sequential game,
x plays first followed by y. Both players are rational and have
complete information about each other’s payoffs for each possible
strategy. The extensive form representation of this game is shown
in figure 2. The payoffs for each pair of moves are the same as
in section 4.1. Since both players are rational and have complete
information about each other, x calculates that y will respond by
choosing Selective strategy if it chooses Selective strategy. Thus,
both providers optimize their fitness by choosing Selective strat-
egy when they play sequentially. Hence, in this model only (S, S)
constitutes the Nash equilibrium. (O,O) is not an equilibrium in
this model since x (the first player) knows that if it uses O then y

will respond with O resulting in a suboptimal situtation of (O,O).
Thus, in the sequential game of complete information the players
will reach the optimal equilibrium only.

Figure 2: Dynamic Game: Extensive Form Representation

4.3 Static Game of Incomplete Information
In this section we again assume that transit providers play simul-

taneously. However, the players are uncertain about each other’s
payoffs. Each player has three possible types corresponding to
the three peering policies. Thus, the type space of x is: Tx =
{txR, txS, txO} where txA denotes that x uses peering policy A.

Analysis of a single stage static game with incomplete informa-
tion can be done as follows. Using the same set of players and ac-

tions we define the following probability distributions on the types
of each player:
P [txR] = θxR (probability that x uses strategy R)
P [txS] = θxS
P [txO] = 1− θxR − θxS
P [tyR] = θyR (probability that y uses strategy R)
P [tyS] = θyS
P [tyO] = 1− θyR − θyS

These probability distributions reflect the beliefs of players about
each other’s strategy choices. Given the topology of the network,
each provider x and y can predict its payoff for each strategy. For
example, if x uses Selective strategy then it can compute its ex-
pected payoff given θyR, θyS and 1− θyR − θyS . The objective of
each provider is to choose the peering strategy that maximizes its
expected payoff.

The expected payoff of x if it uses Restrictive strategy is given
by:

E[πx(R)] = θyR × πx(R,R) + θyS × πx(R,S)

+ (1− θyR − θyS)× πx(R,O)

The objective of provider x is to choose the peering strategy such
that:

PS(x) = arg max
s∈S(x)

{E[πx(s)]}

Since Restrictive strategy is always dominated by Selective

and Open strategies for both providers we can assume that θxR =
θyR = 0 i.e. neither provider will use Restrictive strategy. We
focus on the remaining cases. Table 3 gives the expected payoffs
for both providers.
Analysis: We carry out the analysis for x. x uses Open strategy if
E[πx(S)] < E[πx(O)]. In order to check if this condition is true
we assume that E[πx(O)] > E[πx(S)]. If E[πx(O)] > E[πx(S)]
then:

Px × (Vba)− PP × (V ′

xy + V
′

xb + Vba) > −PP × (V ′

xy + V
′

xb)

=⇒ Px × (Vba)− PP × (Vba) > 0



Player x Player y

S E[πx(S)] = θyS×{Px×(V ′
ya+V ′

ab
)−PP ×(V ′

Tx
)}+(1−θyS )×

{−PP × (V ′
xy + V ′

xb
)}

E[πy(S)] = θxS ×{Py × (V ′

yb
+V ′

Ty
)−PP × (V ′

Ty
)}+(1−θxS )×

{Py × (V ′

yb
)− PP × (V ′

xy + V ′
ya)}

O E[πx(O)] = θyS×{Px×(V ′
ya+V ′

ab
)−PP ×(V ′

Tx)}+(1−θyS)×

{Px × (Vba)− PP × (V ′
yx + V ′

xb
+ Vba)}

E[πy(O)] = θxS ×{Py× (V ′

yb
+V ′

Ty)−PP × (V ′

Ty)}+(1−θyS)×

{Py × (V ′

yb
+ Vab) − PP × (V ′

xy + V ′
ya + Vab)}

Table 3: Expected Payoffs Static Game of Incomplete Information

=⇒ Px > PP

which is the fundamental condition for settlement-free peering in
the first place. Thus, x will adopt Open peering strategy. The same
can be said of y leading to the Bayesian equilibrium (O,O). The
above evaluation implies that as long as peering cost is less than
transit cost and the likelihood of the other player adopting Open

peering is non-zero, the result would be gravitation towards Open

peering. It is interesting to note x adopted Open peering regardless
of the magnitude of θyO. This happens because even the remote
likelihood that the other player will adopt Open peering implies a
complete loss in its transit revenue. Given that transit costs (and
revenue) are much higher than peering costs, the uncertain player
will always choose Open peering so as to avoid a complete loss
in revenue. Therefore, the uncertainty about each other’s payoffs
leads to both providers adopting Open peering strategy.

5. CONCLUSIONS
In this paper, we used game theoretic analysis to explore the ap-

parently counterintuitive adoption of Open peering by transit providers.
Our analysis showed that peering strategy adoption is not an iso-
lated decision. We showed that in the presence of complete infor-
mation, transit providers optimize their economic fitness by adopt-
ing Selective peering strategy. We showed that in the absence of
complete information about other providers, transit providers adopt
Open peering which leads to a suboptimal equilibrium.

6. REFERENCES
[1] “PeeringDB,” http://www.peeringdb.com, October 2011.

[2] A. Lodhi, A. Dhamdhere, and C. Dovrolis, “Gravitation of
Internet Providers towards Open peering: Dynamics and
Economic Consequences,”
http://www.cc.gatech.edu/∼lodhi/peering/conext.pdf.

[3] ——, “GENESIS: An agent-based model of interdomain
network formation, traffic flow and economics.” in
Proceedings of the IEEE INFOCOM, 2012.

[4] “GENESIS,” http://www.cc.gatech.edu/∼dovrolis/genesis.

[5] “North American Network Operators’ Group,”
http://www.nanog.org, 2011.


