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ABSTRACT
At the core of the network neutrality debate we find that ISPs, in
particular the last-mile Access Providers (APs), are trying to find
new ways to be profitable, despite the fact that their transit traf-
fic has been dramatically increasing, while they continue to charge
their customers a flat monthly price. In this paper, we consider a
simple model of an AP that serves its users traffic from a num-
ber of Content Providers (CPs). The AP can communicate with
the CPs through a Transit Provider (TP) or through settlement-free
peering. We examine the profitability of the AP under a “baseline”
model that is based on current practice, considering the heavy tailed
variability in per-user traffic and in the popularity of different CPs.
Further, we consider other strategies, such as usage-based pricing
for heavy hitters, selective peering with popular CPs, and content
caching. Our results indicate that an AP can be profitable without
the risk of losing users and without violating “network neutrality”,
through selective peering with CPs and/or content caching.

Categories and Subject Descriptors
C.2.3 [COMPUTER-COMMUNICATION NETWORKS]: Net-
work Operations

General Terms
Economics, performance, measurement

Keywords
Network neutrality, ISP pricing, ISP peering

1. INTRODUCTION
The increasing penetration of broadband access, faster last-mile

links, the rise of Internet video and peer-to-peer file sharing mean
that residential and SOHO (Small Office, Home Office) users down-
load increasingly more content. This content is delivered to users
by Internet Service Providers (ISPs) that are known as Access Providers
(APs). APs earn their revenues mostly from their users, and they
incur costs to operate their network and to purchase upstream con-
nectivity from transit providers. A much discussed trend in recent
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times is that APs are often not profitable, as the increasing transit
traffic leads to escalating costs, while the intense competition in the
access market and the commoditization of Internet access leads to
falling prices, typically in the form of a flat monthly fee [6, 9, 12].

The APs see their profitability shrink as their role in the Inter-
net ecosystem becomes simply to “move bits around” instead of
providing end-to-end services such as IPTV or VoIP. On the other
hand, content providers, “over-the-top” services and application
providers, collectively referred to as Content Providers (CPs) in this
paper, get all the attention recently (and often the profits as well..).
This tension has led to the “network neutrality” debate. Despite the
many articles in the popular press, articles written by economists
and telecommunication policy experts [1, 7, 8, 11, 15, 16, 17], and
by computer scientists [5, 14, 18], this debate is still highly misun-
derstood. We believe that this debate is not really about the “neu-
trality” of the Internet (a concept that is ill-defined, to say the least),
but about the profitability of APs. At the end of the day, it is they
that want to change the status quo by charging some CPs, discrim-
inating traffic in priority classes, or entirely blocking certain flows.
To understand the network neutrality debate, we need to understand
both the economic structure and the traffic characteristics that APs
need to work with.

In this paper, we approach this issue quantitatively using a sim-
ple model that captures the interactions between an AP, a transit
provider, and a number of CPs. The model captures the per-user
heavy-tailed traffic distribution, the highly skewed popularity dis-
tribution among CPs, and realistic functions for the transit, peering
and operating costs incurred by the AP. We first examine a “base-
line strategy” that follows current practice, in which the AP charges
the same flat rate to all users. Further, the AP does not establish
peering sessions with CPs. We then compare this baseline strategy
to some strategies that an AP could use to increase its profitability.
We focus mainly on strategies that are “network neutral”, mean-
ing that the AP does not differentiate between sources of content.
These strategies are: usage-based pricing for heavy-hitters, limit-
ing the traffic of heavy-hitters, selectively peering with some CPs,
and caching content from selected providers. We also investigate
a “non-network neutral” strategy in which an AP charges CPs di-
rectly. Our results show that certain strategies are rarely profitable
or they are sensitive to factors that are not controlled by the AP
(e.g., how would users react to heavy-hitter usage-based pricing?).
On the other hand, the strategy of selective peering with CPs is non-
disruptive and it can lead to a profit increase, relative to the baseline
strategy, for the AP. To increase the effectiveness of such peering,
it is important that the AP is co-located with the most popular CPs
so that it can reduce peering costs. Caching can also help, even
though the profit increase with that strategy depends significantly
on the fraction of traffic that can be cached.



2. THE NETWORK MODEL
We consider the interactions between three distinct species in the

Internet ecosystem.
Access provider (AP): We focus on a single AP that sells Inter-

net access to N paying users.
Content providers (CP): Content providers are the sources of

content on the Internet. They do not provide access or transit ser-
vice to any customers. Instead, CPs earn revenue from sources such
as advertisements (out of band revenue). In this work, we do not
model the costs and revenues of the CPs, instead focusing on the
AP. Further, we take into account only the traffic flow from CPs to
the AP, ignoring the requests from customers which are assumed to
be small. Also, we assume that the AP does not receive any traffic
from other APs, e.g. due to p2p applications. We intend to account
for p2p traffic in the extended version of this paper.

Transit providers(TP): TPs provide transit for their customers,
which are other ASes. TPs earn revenue by charging their cus-
tomers for the volume of traffic sent and received. For simplicity,
we consider a single TP that can provide transit to any other AS.

All ASes have a certain geographical scope, which is determined
by the locations of their points-of-presence (PoPs). Large TPs are
typically present globally, while APs and CPs could have only re-
gional presence. As a result, an AP cannot always connect directly
to a CP, and the TP is needed to provide reachability. An alterna-
tive is for the AP to establish a point of presence in remote locations
(using a leased line to that location, for instance) or for the CPs to
come closer to the AP by using a content distribution network.

We model two distinct types of inter-AS connections. In a transit
(CP) relation, the customer “buys” transit service from the provider.
The customer typically pays the provider for traffic sent in both
directions on the customer-provider link. In a peering connection,
two ASes agree to exchange traffic for free. If the CP and AP have
a peering relationship, then the traffic flows directly between the
two networks. If both the CP and the AP are customers of the tier-1
provider, then the tier-1 transits traffic that flows from the CP to the
AP. Figure 1 illustrates this network model.
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Figure 1: The network model

3. THE BASELINE MODEL
This section describes and evaluates a “baseline” model. We

believe this model represents the most common current practices,
and it captures pricing, connectivity and traffic distribution among
the users of the AP and among CPs.

Connectivity and pricing: We consider a situation where both
the AP and CP connect to the TP as transit customers, and there are
no peering links between the AP and CPs. The AP has N users and
charges each of those users based on a flat monthly rate R, giving
it a revenue N ∗R. Based on common prices for Internet access in
North America, we set the flat rate charged by the AP to $20/month.
The TP charges both the AP and the CPs using the volumes of
traffic sent in both directions. The transit pricing function we use
for the TP is a concave increasing function of the form ct = mt ∗

V 0.75, where mt is the transit pricing multiplier used by the TP, V
is the charging traffic volume (in Mbps), and ct gives the monthly
price for transit. This pricing function was used in [3] based on
pricing data obtained from ISPs, and mt was around 100 for transit
ISPs in North America. Here, we use a transit multiplier mt =
100 for the TP. Using this pricing function, a charging volume of
10Mbps costs $560 ($56/Mbps), while 10Gbps costs $100,000 (
$10/Mbps). This illustrates the well known “economies of scale” in
transit prices, i.e., the per-Mbps price decreases as the total charged
capacity increases.

The TP typically calculates the charging volume V by dividing
the month into 5 minute intervals, and V is the 95th percentile of
the load on the customer link over all such intervals. Norton [13]
notes that the 95th percentile charging model is based on the rule
of thumb that the ratio of the 95th percentile to the average load
is around 2:1 for web traffic. With the increase of video traffic,
however, that ratio could be as high as 4:1. In this paper, we assume
that the ratio of 95th percentile to average load is 3:1.

Local costs: The local cost of an AP consists of expenses to
lease bandwidth for its network, purchase routers and other equip-
ment, and to hire personnel to operate the network. This local cost
is modeled as traffic independent and traffic dependent components
of the form cl = fl + ml ∗ V 0.5. fl is the traffic independent
fixed cost component, and we set fl =$250000/month for the AP.
The local cost multiplier ml is set to 500. In the absence of data
about ISP operational costs, the local cost parameters are chosen to
yield a net profit margin of approximately 20% for the AP, which
is similar to what was seen in the balance sheet of a large North
American access ISP. The local cost exponent is 0.5, which means
that the cost incurred to carry traffic scales slower than the transit
costs paid by the AP, while also showing economies of scale.

AP profit: The profit of the AP in the baseline model is the total
revenues minus the transit and local costs, i.e.,

P = NR − mt ∗ V 0.75
− fl − ml ∗ V 0.5 (1)

AP users: Each of the N users of the AP downloads a certain
amount of traffic every month. To model the user traffic demand,
we refer to a study of residential broadband access networks in
Japan [4]. That study found that the distribution of the amount
downloaded by a user is heavy tailed. In their measurements, ap-
proximately 4% of users download more than 75 GB/month (heavy
hitters), while the remaining download less than 75 GB/month (nor-
mal users). We estimate the average of the normal and heavy hitter
users as 300 MB/month and 10GB/month respectively, which gives
an overall average of approximately 8GB/month.

Here, we draw the amount downloaded by each user from a
truncated Pareto distribution with shape parameter 1.1 and mean 8
GB/month, in which case 2% of the users download more than 75
GB/month. The distribution is truncated from above at a point cor-
responding to the the access link speed. For example, a user behind
a 1.5Mbps connection cannot download more than 486 GB/month.
We consider different values of the cutoff point corresponding to
the various common access speeds: 300kbps (97 GB/month), 700kbps
(226 GB/month), 1.5Mbps (486 GB/month) and 10Mbps (3240
GB/month). Figure 2 shows the complementary CDF (CCDF) of
the amount downloaded by each user. Unless noted otherwise, we
use a cutoff point corresponding to the 1.5Mbps access speed in the
rest of this paper.

Inter-AS traffic matrix: After generating the traffic demands
for AP users, we create the distribution of the traffic among CPs
as follows. The total incoming traffic for the AP is calculated as
the sum of the incoming traffic demands for each of its users. This
total is used to obtain the average incoming traffic, in Mbps, for
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Figure 2: CCDF of the amount downloaded by users
(GB/month).

the AP. Chang et al. [2] found that the traffic distribution from the
top content providers follows a Zipf-like distribution, with shape
parameter ranging from 0.9 to 1.1. We assign the actual traffic
volumes from each CP i to the AP using a Zipf distribution with
shape parameter 1. This produces an effect where certain CPs are
“popular” sources of content for the AP.

3.1 Evaluation of the baseline scheme
Here, we evaluate the performance of the baseline model used

by the AP. We examine how the profit of the AP varies with the
number of users, the different random samples of users, and the
increasing amount of video traffic.

Variability in the set of users: We first examine what happens
when the number of AP users increases. Recall that the traffic de-
mand of each user is drawn from the heavy-tailed truncated Pareto
distribution described earlier. The large variability in the traffic
demand of individual users leads to also large variability in the
costs incurred by the AP. To demonstrate this effect, we draw 1000
samples (corresponding to different samples of the user population)
from a truncated Pareto distribution with shape parameter 1.1 and
different cut-off points corresponding to different access speeds.
We then create the inter-AS traffic matrices and calculate the costs
incurred by the AP. Figure 3 shows the median and the min-max
range of the AP costs across 1000 simulation runs. We find that
the costs of the AP can vary significantly depending on the amount
downloaded by its set of users. Moreover, as the user access speed
increases, both the sample mean and the variance increase. This
means that the increasing access speeds that users enjoy in the last
few years will lead to increasing variability in the AP costs, making
it harder for access providers to guarantee their profitability.

The impact of video traffic: A recent trend is that a large frac-
tion of the traffic from content providers is streaming video. Nor-
ton [13] notes that video traffic is fundamentally different from web
traffic, as the ratio of the 95th percentile to the average load due to
video is 4:1, while for web traffic it is roughly 2:1. Consider, for
example, that the users download web content at an average rate of
V Mbps. Using the 2:1 ratio for web traffic, the AP provisions its
network and gets charged by the TP for a charging volume 2V . If
the traffic is video, the AP must provision its network and purchase
transit capacity for 4V . This leads to a significant increase in the
costs incurred by the AP, as shown in Figure 3.

4. ISP STRATEGIES
There are various strategies that an AP could deploy to increase

its profits. In this section, we evaluate some strategies that are anec-
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Figure 3: Variability of AP costs with the number of users, ac-
cess speeds and type of traffic.

dotally mentioned in discussions about network neutrality and ISP
economics. We attempt to gain a deeper, quantitative understand-
ing of the pros and cons of these strategies. Further, we compare
each strategy with the baseline, and evaluate the conditions under
which the AP is able to achieve better profits than the baseline.

4.1 AP charges heavy hitters
In this charging strategy, the AP sets a threshold T to identify the

users that download the largest amounts of traffic. These users are
called the “heavy hitters”, and the AP uses a volume-based pricing
scheme for these users, rather than the flat rate. The price charged
to a heavy hitter that downloads an amount of traffic D > T is
given by: cv(D) = D∗R

T
, i.e., a heavy hitter is charged propor-

tional to the amount of traffic downloaded.
A volume-based charging strategy is likely to be unpopular with

the AP’s users. In the presence of sufficient competition in the
AP market, customers would switch from an AP that uses volume-
based charging to an AP that offers flat-rate, “all you can eat” ser-
vice. We model the unpopularity of volume-based charging with
a probability that a user leaves this AP, referred to as departure
probability. The departure probability depends on the threshold T

set by the AP and is calculated as follows. For a value of T set
by the AP, it is possible to calculate the number of users Nh that
would be classified as heavy hitters. The number of users Nd that
are expected to depart at this threshold is assumed to be propor-
tional to Nh, Nd = d ∗ Nh, where d is a positive parameter. The
departure probability is then set to Nd/N (as long as Nd ≤ N ).
The departure probability is applied to all users, not only those that
are classified as heavy hitters. This captures the pragmatic fact that
users are uncertain about their monthly usage and so they may leave
the AP to avoid the possibility of extra fees if they get classified as
heavy hitters. The parameter d determines the shape of the depar-
ture probability curve, as shown in Figure 4. The parameter d is
also related to the degree of competition in the Internet access mar-
ket. Without competition, users would be bound to a particular AP
and d would be quite low as long as users need to have Internet
access.

We evaluate the heavy hitter charging strategy by calculating the
profit of the AP for different values of the threshold T and the pa-
rameter d. Figure 5 shows the profit of the AP as a function of the
threshold T . In the case of d = 0.1 and d = 1, the user departure
probability decreases quickly with T . In this case, even for low
values of T , the AP retains a significant fraction of users, and also
charges them according to the downloaded traffic. Consequently, it
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Figure 4: User departure probability as a function of T ,
N=20000.

can achieve higher profits than the baseline scheme. In the case of
d = 2 and d = 10, the user departure probability decreases slowly,
and the optimal value of T shifts higher. In the most extreme case
of d = 10, the optimal value of T occurs when the AP is able to
keep all its users. The AP’s profit in that case is similar to that of the
baseline scheme. The curves for different access speeds are qual-
itatively similar. As expected, the benefit of heavy hitter charging
is smaller if the users are limited by a smaller access speed. This is
simply because there are fewer heavy hitters at any given value of
T that the AP would be able to charge.

The previous results illustrate that a volume-based charging strat-
egy is quite sensitive to the user departure probability, which is not
controlled by the AP. Even if the departure probability is low, it is
difficult to determine the optimal value of T , and hence this strat-
egy is not robust to the selection of this threshold. If the AP sets T
to a sub-optimal point, it could end up with even lower profit than
in the baseline scheme.
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Figure 5: AP profit as a function of T when the AP charges
heavy hitters, N=20000.

4.2 AP caps heavy hitters
In this strategy, the AP imposes “download caps” on its users,

i.e., users are not permitted to download more than T GB/month.
If a user reaches that threshold, her account is blocked for the re-
mainder of the month1. In this strategy, the AP charges each access
1In practice, the AP may choose to seriously rate-limit a user that
exceeds her threshold. For simplicity, we consider the more ex-

customer with the same flat rate R. As with the strategy of charging
heavy hitters, capping the amount that a user is allowed to down-
load can be an unpopular strategy. We assume that the departure
probability with this strategy is modeled using the same function
as in 4. In practice, the departure probability in this model may be
higher or lower than in the heavy hitter charging scheme, depend-
ing on the user population, the available pricing plans and policies
of competing APs, and how APs justify/present these policies to
their users.

Figure 6 shows the profit of the AP as a function of the threshold
T used by the AP to cap customers. We find similar trends as in the
case of heavy hitter charging. The strategy of capping heavy hit-
ters performs worse than heavy hitter charging, even when the cus-
tomer departure probability drops quickly (curves marked “d=1”
and “d=0.1”). By capping heavy users, the AP is only able to save
on its operating costs, and does not gain any additional revenue.
With the same user departure profile as in the case of heavy-hitter
charging, this strategy would be less profitable for the AP.
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Figure 6: AP profit as a function of T when the AP caps heavy
hitters, N=20000.

4.3 AP charges CPs
There has been much debate on whether an AP should be able

to discriminate between CPs. To recover the costs due to increas-
ing traffic volumes, APs would like to charge the CPs that produce
most traffic. The AP could rank CPs in decreasing order of traffic
volume, and charge a certain fraction of the top providers. We as-
sume that the AP would use its transit pricing function to charge
those CPs. This strategy is again likely to be unpopular, and a frac-
tion of the AP’s customers may choose to switch to another AP. We
model this by making the customer departure probability depen-
dent on the fraction of CPs charged by the AP using a function of
the form y = axb+c. The parameter b determines the shape for the
departure probability curve as shown in Figure 7. The values of a
and c are adjusted to give a departure probability of 0 when no CPs
are charged and 1 when all CPs are charged. We find that the profit
of the AP depends stongly on the customer departure probability.

The trends in all the three previous strategies highlight an im-
portant tradeoff involved with strategies that can compromise the
customer base of the AP. If the AP charges or throttles heavy hit-
ters, or tries to charge CPs instead, it may lose some of its cus-
tomers. Whether such a charging strategy increases the profitability
of the ISP depends heavily on the customer departure probability.
As such, the fate of an AP that deploys such a strategy would be
highly dependent on user behavior. In the following, we investigate
treme measure where the user is blocked.
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Figure 7: AP profits by charging CPs, as a function of the frac-
tion of CPs charged, N=20000, 1.5Mbps access.

alternate, non-disruptive strategies that the AP could use to increase
its profits.

4.4 Selective peering with CPs
So far, we have considered the baseline model in which the AP

and CPs are customers of the TP, and there is no direct peering
between the AP and CPs. Here, we study a strategy where the AP
follows a selective peering policy, peering with a CP depending on
the potential benefits and costs associated with peering.

Chang et al. [3] studied the fixed and traffic dependent costs as-
sociated with peering. To model the traffic dependent peering costs,
we use the function cp = fp + mp ∗ V 0.25, which is the function
used in [3]. The parameters fp and mp are different for each CP,
and they indicate the difficulty of peering with that CP. For exam-
ple, some CPs may be colocated in the same city as the AP, in which
case the peering costs are low. On the other hand, some CPs may
be in entirely different continents, in which case it costs much more
(or it may even be impossible) to peer with that CP. We assume that
content providers fall into different classes depending on the ease
of peering with that content provider. The peering cost multiplier is
different for each class of CPs and the values are 10 (easiest), 100
(medium) and 1000 (hardest) peering. The fixed peering costs for
these classes are $500/month (easy), $5000/month (medium) and
$50000/month (hard). These classes of peering costs are meant to
capture the fact that it may be practically impossible for the AP to
peer with certain CPs (the “hard” class). For CPs in the “medium”
and “easy” classes, it makes sense for the AP to peer, if the traf-
fic volume is sufficiently large. The figures we use for the fixed
costs of the easy and medium classes are in the same range as those
quoted by Norton [13]. The fixed cost of the “hard” class is very
large, to model the fact that it does not make sense for the AP to
peer with a CP in that class.

We investigate two distinct divisions of the CPs into the three
peering cost classes. In the first, a CP is equally likely to be in
any of the three classes. In the second, a CP is in the “easy” and
“medium” peering class with probability 0.1 each, and with proba-
bility 0.8 is in the “hard” class. We also vary the assignment of CPs
to these classes. In one case, the set of CPs in each class is deter-
mined randomly. In the second case, the most popular CPs are also
the easiest to peer with. This scenario is likely in the case that the
popular CPs expand their networks and are thus present in multiple
peering points. A recent study gives evidence that some content
providers are indeed expanding their networks in recent times [10].

To determine the set of CPs with which to peer, the AP uses the

following procedure. The AP considers separately each CP i, and
decides whether to peer with CP i based on a simple rule-of-thumb.
Let V (i) be the traffic from CP i. The AP calculates the estimated
benefit of peering (saving in transit costs) as the amount that would
be paid to the TP, assuming a charging volume V (i). This is an
approximation, as it does not account for the economies of scale
when multiple CPs send traffic to the AP through the same TP.

The AP decides to peer with the CP if the following condition is
satisfied:

mt ∗ V (i)0.75

fpi + mpi ∗ V (i)0.25
> R

The estimated cost of sending the traffic V (i) through the TP is
given by mt ∗ V (i)0.75. The cost of peering with CP i is given by
fpi + mpi ∗ V (i)0.25 .

Figure 8 shows the profit of the AP as the ratio R is changed.
The left plot is for the case where the CPs are distributed randomly
in the three cost classes (“rand”). The number of CPs in each class
is either the same (marked “eq”), or is skewed towards “hard” peer-
ing (marked “sk”). We repeat the simulations for different number
of content providers (“N 50” and “N 200”). All curves show quali-
tatively similar behavior. If the ratio R is set too low, the AP forms
peering relationships that incur more cost than the transit savings.
On the other hand, if the ratio is too large, the AP does not peer
with certain content providers that would have reduced the transit
costs for the AP. We see that the optimal point for the ratio R oc-
curs after R = 1. This is because of the fact that the AP uses an
estimate of the transit savings. Due to the economies of scale in
the TP’s transit pricing function, the AP over-estimates the poten-
tial savings in transit. An interesting trend is that above a certain
value of R, the profit is fairly robust to changes in R. Also, the
profit from peering is larger when the incoming traffic is split into
a smaller number of CPs (N=50 vs N=200).

In Figure 8, the profit increase from peering is only 5% over the
baseline scheme. Note that the absolute value of the profit (and the
improvement over the baseline) depends on certain parameter val-
ues, such as the number of AP customers and the fixed local costs.
We stress that with an appropriate choice of R, the AP’s profit with
peering is guaranteed to be equal to or greater than that with the
baseline scheme. The peering strategy does not increase the rev-
enues of the AP or affect the fixed local costs. Instead, it reduces
the traffic-dependent costs incurred by the AP. For the case of (“N
50 sk sort”) in Figure 8, the traffic-dependent cost is $33,000 with
peering and $40,000 for the baseline scheme, i.e., peering reduces
those costs by 17%.

The strategy of selective peering appears to be quite attractive
because the parameter R is controlled solely by the AP. The right
graph shows that the benefit from selective peering is larger for the
peering cost structure where the CPs with the largest traffic vol-
ume fall into the “easy” or “medium” classes. This could happen
if the largest CPs expand their networks, and are thus easy to peer
with. Given that such expansion by CPs is already happening [10],
selective peering could be a profitable strategy for many APs.

4.5 AP caches CP content
We also consider the case where the AP chooses to cache the

content that it receives from the major content providers. By caching
content, most requests for content by the access customers of the
AP are handled locally, and hence can save transit costs for the
AP. Here, we assume that there exists a certain fraction h of con-
tent from each CP that is “cacheable”. When the AP caches con-
tent from CP i, the traffic h ∗ V (i) is served locally, while (1 −

h) ∗ V (i) has to be downloaded through the transit provider. The
fraction h captures the fact that all content from the CP may not
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Figure 8: AP profits with selective peering as a function of R.
N=20000, 1.5Mbps access.

be cacheable, e.g. dynamically generated content or live video
streams. By caching content locally the AP saves transit costs. We
model the costs of caching CP content, which involve purchasing
servers and bandwidth to serve the content locally. We assume that
caching adds to the fixed local cost of the AP according to the re-
lation fc = s ∗ fl, where s is a parameter that determines how
the caching cost relates to the local cost. The AP must decide how
many of the largest CPs to cache. The CPs are considered in de-
creasing order of traffic volume, because caching the largest CPs
can lead to the largest potential savings in the transit costs.

Figure 9 shows the profitability of the AP as a function of the
fraction of CPs cached. We simulate two cases corresponding to
s = 0.01 and s = 0.5. First, we observe that the profit of the
AP increases with the fraction of CPs that it caches, following a
concave function. The figure on the left shows the case where the
caching cost is large (equal to half of the fixed local cost). In this
case, the AP is not able to do better than the baseline scheme, even
if it caches all CPs. The right graph shows the case where caching
costs are very low in comparison with the fixed local costs. In
this case, the AP is able to achieve higher profits than the baseline
scheme, depending on how much traffic is cacheable.

This analysis indicates that the attractiveness of content caching
depends on the additional local cost incurred by the AP. The AP
may be able to optimize its network in such a way that caching
costs are small in relation to fixed local costs. In that case, the
amount of CP traffic that is cacheable determines whether the AP
can obtain higher profits than the baseline scheme. Note that this
is again a parameter that is out of the AP’s control. The previous
scenario represents the case where a CP allows the AP to freely
cache its content. It is possible that the CP does not allow the AP to
do so due to copyright or privacy concerns. As such, our analysis
of this strategy evaluates the best case scenario for the AP.

5. CONCLUSIONS
We took a quantitative approach towards understanding the net-

work neutrality issue from the point of view of an access provider.
We examined a baseline scheme that follows current practices, and
some variants of charging and connection schemes. Our results
show that AP strategies based on charging are rarely profitable or
are highly sensitive to factors out of the control of the AP. On the
other hand, the AP can obtain substantial additional profit by en-
gaging in selective peering with CPs or caching CP content locally.
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Figure 9: AP profits from caching CP content. nA=20000,
1.5Mbps access
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